@inproceedings{meaney-etal-2024-testing,
title = "Testing and Adapting the Representational Abilities of Large Language Models on Folktales in Low-Resource Languages",
author = "Meaney, J. A. and
Alex, Beatrice and
Lamb, William",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Miyagawa, So and
Alnajjar, Khalid and
Bizzoni, Yuri},
booktitle = "Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities",
month = nov,
year = "2024",
address = "Miami, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4dh-1.31",
pages = "319--324",
abstract = "Folktales are a rich resource of knowledge about the society and culture of a civilisation. Digital folklore research aims to use automated techniques to better understand these folktales, and it relies on abstract representations of the textual data. Although a number of large language models (LLMs) claim to be able to represent low-resource langauges such as Irish and Gaelic, we present two classification tasks to explore how useful these representations are, and three adaptations to improve the performance of these models. We find that adapting the models to work with longer sequences, and continuing pre-training on the domain of folktales improves classification performance, although these findings are tempered by the impressive performance of a baseline SVM with non-contextual features.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meaney-etal-2024-testing">
<titleInfo>
<title>Testing and Adapting the Representational Abilities of Large Language Models on Folktales in Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Meaney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Lamb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Folktales are a rich resource of knowledge about the society and culture of a civilisation. Digital folklore research aims to use automated techniques to better understand these folktales, and it relies on abstract representations of the textual data. Although a number of large language models (LLMs) claim to be able to represent low-resource langauges such as Irish and Gaelic, we present two classification tasks to explore how useful these representations are, and three adaptations to improve the performance of these models. We find that adapting the models to work with longer sequences, and continuing pre-training on the domain of folktales improves classification performance, although these findings are tempered by the impressive performance of a baseline SVM with non-contextual features.</abstract>
<identifier type="citekey">meaney-etal-2024-testing</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4dh-1.31</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>319</start>
<end>324</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Testing and Adapting the Representational Abilities of Large Language Models on Folktales in Low-Resource Languages
%A Meaney, J. A.
%A Alex, Beatrice
%A Lamb, William
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Miyagawa, So
%Y Alnajjar, Khalid
%Y Bizzoni, Yuri
%S Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, USA
%F meaney-etal-2024-testing
%X Folktales are a rich resource of knowledge about the society and culture of a civilisation. Digital folklore research aims to use automated techniques to better understand these folktales, and it relies on abstract representations of the textual data. Although a number of large language models (LLMs) claim to be able to represent low-resource langauges such as Irish and Gaelic, we present two classification tasks to explore how useful these representations are, and three adaptations to improve the performance of these models. We find that adapting the models to work with longer sequences, and continuing pre-training on the domain of folktales improves classification performance, although these findings are tempered by the impressive performance of a baseline SVM with non-contextual features.
%U https://aclanthology.org/2024.nlp4dh-1.31
%P 319-324
Markdown (Informal)
[Testing and Adapting the Representational Abilities of Large Language Models on Folktales in Low-Resource Languages](https://aclanthology.org/2024.nlp4dh-1.31) (Meaney et al., NLP4DH 2024)
ACL