@inproceedings{foo-khoo-2025-lionguard,
title = "{L}ion{G}uard: A Contextualized Moderation Classifier to Tackle Localized Unsafe Content",
author = "Foo, Jessica and
Khoo, Shaun",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven and
Darwish, Kareem and
Agarwal, Apoorv",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics: Industry Track",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-industry.60/",
pages = "707--731",
abstract = "As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM usage. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by at least 14{\%} (binary) and up to 51{\%} (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages, particularly English-based creoles."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="foo-khoo-2025-lionguard">
<titleInfo>
<title>LionGuard: A Contextualized Moderation Classifier to Tackle Localized Unsafe Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Foo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaun</namePart>
<namePart type="family">Khoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Apoorv</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM usage. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by at least 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages, particularly English-based creoles.</abstract>
<identifier type="citekey">foo-khoo-2025-lionguard</identifier>
<location>
<url>https://aclanthology.org/2025.coling-industry.60/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>707</start>
<end>731</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LionGuard: A Contextualized Moderation Classifier to Tackle Localized Unsafe Content
%A Foo, Jessica
%A Khoo, Shaun
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%Y Darwish, Kareem
%Y Agarwal, Apoorv
%S Proceedings of the 31st International Conference on Computational Linguistics: Industry Track
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F foo-khoo-2025-lionguard
%X As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM usage. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by at least 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages, particularly English-based creoles.
%U https://aclanthology.org/2025.coling-industry.60/
%P 707-731
Markdown (Informal)
[LionGuard: A Contextualized Moderation Classifier to Tackle Localized Unsafe Content](https://aclanthology.org/2025.coling-industry.60/) (Foo & Khoo, COLING 2025)
ACL