@inproceedings{wang-etal-2025-gl,
title = "{GL}-{GAN}: Perceiving and Integrating Global and Local Styles for Handwritten Text Generation with Mamba",
author = "Wang, Yiming and
Wei, Hongxi and
Wang, Heng and
Sun, Shiwen and
He, Chao",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.166/",
pages = "2434--2444",
abstract = "Handwritten text generation (HTG) aims to synthesize handwritten samples by imitating a specific writer, which has a wide range of applications and thus has significant research value. However, current studies on HTG are confronted with a main bottleneck: dominant models lack the ability to perceive and integrate handwriting styles, which affects the realism of the synthesized samples. In this paper, we propose GL-GAN, which effectively captures and integrates global and local styles. Specifically, we propose a Hybrid Style Encoder (HSE) that combines a state space model (SSM) and convolution to capture multilevel style features through various receptive fields. The captured style features are then fed to the proposed Dynamic Feature Enhancement Module (DFEM), which integrates these features by adaptively modeling the entangled relationships between multilevel styles and removing redundant details. Extensive experiments on two widely used handwriting datasets demonstrate that our GL-GAN is an effective HTG model and outperforms state-of-the-art models remarkably. Our code is publicly available at:https://github.com/Fyzjym/GL-GAN."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-gl">
<titleInfo>
<title>GL-GAN: Perceiving and Integrating Global and Local Styles for Handwritten Text Generation with Mamba</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongxi</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiwen</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Handwritten text generation (HTG) aims to synthesize handwritten samples by imitating a specific writer, which has a wide range of applications and thus has significant research value. However, current studies on HTG are confronted with a main bottleneck: dominant models lack the ability to perceive and integrate handwriting styles, which affects the realism of the synthesized samples. In this paper, we propose GL-GAN, which effectively captures and integrates global and local styles. Specifically, we propose a Hybrid Style Encoder (HSE) that combines a state space model (SSM) and convolution to capture multilevel style features through various receptive fields. The captured style features are then fed to the proposed Dynamic Feature Enhancement Module (DFEM), which integrates these features by adaptively modeling the entangled relationships between multilevel styles and removing redundant details. Extensive experiments on two widely used handwriting datasets demonstrate that our GL-GAN is an effective HTG model and outperforms state-of-the-art models remarkably. Our code is publicly available at:https://github.com/Fyzjym/GL-GAN.</abstract>
<identifier type="citekey">wang-etal-2025-gl</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.166/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>2434</start>
<end>2444</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GL-GAN: Perceiving and Integrating Global and Local Styles for Handwritten Text Generation with Mamba
%A Wang, Yiming
%A Wei, Hongxi
%A Wang, Heng
%A Sun, Shiwen
%A He, Chao
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wang-etal-2025-gl
%X Handwritten text generation (HTG) aims to synthesize handwritten samples by imitating a specific writer, which has a wide range of applications and thus has significant research value. However, current studies on HTG are confronted with a main bottleneck: dominant models lack the ability to perceive and integrate handwriting styles, which affects the realism of the synthesized samples. In this paper, we propose GL-GAN, which effectively captures and integrates global and local styles. Specifically, we propose a Hybrid Style Encoder (HSE) that combines a state space model (SSM) and convolution to capture multilevel style features through various receptive fields. The captured style features are then fed to the proposed Dynamic Feature Enhancement Module (DFEM), which integrates these features by adaptively modeling the entangled relationships between multilevel styles and removing redundant details. Extensive experiments on two widely used handwriting datasets demonstrate that our GL-GAN is an effective HTG model and outperforms state-of-the-art models remarkably. Our code is publicly available at:https://github.com/Fyzjym/GL-GAN.
%U https://aclanthology.org/2025.coling-main.166/
%P 2434-2444
Markdown (Informal)
[GL-GAN: Perceiving and Integrating Global and Local Styles for Handwritten Text Generation with Mamba](https://aclanthology.org/2025.coling-main.166/) (Wang et al., COLING 2025)
ACL