@inproceedings{liu-etal-2025-conditional,
title = "Conditional Semantic Textual Similarity via Conditional Contrastive Learning",
author = "Liu, Xinyue and
Qin, Zeyang and
Wang, Zeyu and
Liang, Wenxin and
Zong, Linlin and
Xu, Bo",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.306/",
pages = "4548--4560",
abstract = "Conditional semantic textual similarity (C-STS) assesses the similarity between pairs of sentence representations under different conditions. The current method encounters the over-estimation issue of positive and negative samples. Specifically, the similarity within positive samples is excessively high, while that within negative samples is excessively low. In this paper, we focus on the C-STS task and develop a conditional contrastive learning framework that constructs positive and negative samples from two perspectives, achieving the following primary objectives: (1) adaptive selection of the optimization direction for positive and negative samples to solve the over-estimation problem, (2) fully balance of the effects of hard and false negative samples. We validate the proposed method with five models based on bi-encoder and tri-encoder architectures, the results show that our proposed method achieves state-of-the-art performance. The code is available at https://github.com/qinzeyang0919/CCL."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-conditional">
<titleInfo>
<title>Conditional Semantic Textual Similarity via Conditional Contrastive Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyue</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyang</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenxin</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linlin</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conditional semantic textual similarity (C-STS) assesses the similarity between pairs of sentence representations under different conditions. The current method encounters the over-estimation issue of positive and negative samples. Specifically, the similarity within positive samples is excessively high, while that within negative samples is excessively low. In this paper, we focus on the C-STS task and develop a conditional contrastive learning framework that constructs positive and negative samples from two perspectives, achieving the following primary objectives: (1) adaptive selection of the optimization direction for positive and negative samples to solve the over-estimation problem, (2) fully balance of the effects of hard and false negative samples. We validate the proposed method with five models based on bi-encoder and tri-encoder architectures, the results show that our proposed method achieves state-of-the-art performance. The code is available at https://github.com/qinzeyang0919/CCL.</abstract>
<identifier type="citekey">liu-etal-2025-conditional</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.306/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>4548</start>
<end>4560</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conditional Semantic Textual Similarity via Conditional Contrastive Learning
%A Liu, Xinyue
%A Qin, Zeyang
%A Wang, Zeyu
%A Liang, Wenxin
%A Zong, Linlin
%A Xu, Bo
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F liu-etal-2025-conditional
%X Conditional semantic textual similarity (C-STS) assesses the similarity between pairs of sentence representations under different conditions. The current method encounters the over-estimation issue of positive and negative samples. Specifically, the similarity within positive samples is excessively high, while that within negative samples is excessively low. In this paper, we focus on the C-STS task and develop a conditional contrastive learning framework that constructs positive and negative samples from two perspectives, achieving the following primary objectives: (1) adaptive selection of the optimization direction for positive and negative samples to solve the over-estimation problem, (2) fully balance of the effects of hard and false negative samples. We validate the proposed method with five models based on bi-encoder and tri-encoder architectures, the results show that our proposed method achieves state-of-the-art performance. The code is available at https://github.com/qinzeyang0919/CCL.
%U https://aclanthology.org/2025.coling-main.306/
%P 4548-4560
Markdown (Informal)
[Conditional Semantic Textual Similarity via Conditional Contrastive Learning](https://aclanthology.org/2025.coling-main.306/) (Liu et al., COLING 2025)
ACL