@inproceedings{qiu-chen-2025-knowledge,
title = "A Knowledge Graph Reasoning-Based Model for Computerized Adaptive Testing",
author = "Qiu, Xinyi and
Chen, Zhiyun",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.354/",
pages = "5295--5304",
abstract = "The significant of Computerized Adaptive Testing (CAT) is self-evident in contemporary Intelligent Tutoring Systems (ITSs) which aims to recommend suitable questions for students based on their knowledge state. In recent years, Graph Neural Networks (GNNs) and Reinforcement Learning (RL) methods have been increasingly applied to CAT. While these approaches have achieved empirical success, they still face limitations, such as inadequate handling of concept relevance when multiple concepts are involved and incomplete evaluation metrics. To address these issues, we propose a Knowledge Graph Reasoning-Based Model for CAT (KGCAT), which leverages the reasoning power of knowledge graphs (KGs) to capture the semantic and relational information between concepts and questions while focusing on reducing the noise caused by concepts with low relevance by utilizing mutual information. Additionally, a multi-objective reinforcement learning framework is employed to incorporate multiple evaluation objectives, further refining question selection and improving the overall effectiveness of CAT. Empirical evaluations conducted on three authentic educational datasets demonstrate that the proposed model outperforms existing methods in both accuracy and interpretability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qiu-chen-2025-knowledge">
<titleInfo>
<title>A Knowledge Graph Reasoning-Based Model for Computerized Adaptive Testing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyi</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyun</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The significant of Computerized Adaptive Testing (CAT) is self-evident in contemporary Intelligent Tutoring Systems (ITSs) which aims to recommend suitable questions for students based on their knowledge state. In recent years, Graph Neural Networks (GNNs) and Reinforcement Learning (RL) methods have been increasingly applied to CAT. While these approaches have achieved empirical success, they still face limitations, such as inadequate handling of concept relevance when multiple concepts are involved and incomplete evaluation metrics. To address these issues, we propose a Knowledge Graph Reasoning-Based Model for CAT (KGCAT), which leverages the reasoning power of knowledge graphs (KGs) to capture the semantic and relational information between concepts and questions while focusing on reducing the noise caused by concepts with low relevance by utilizing mutual information. Additionally, a multi-objective reinforcement learning framework is employed to incorporate multiple evaluation objectives, further refining question selection and improving the overall effectiveness of CAT. Empirical evaluations conducted on three authentic educational datasets demonstrate that the proposed model outperforms existing methods in both accuracy and interpretability.</abstract>
<identifier type="citekey">qiu-chen-2025-knowledge</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.354/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>5295</start>
<end>5304</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Knowledge Graph Reasoning-Based Model for Computerized Adaptive Testing
%A Qiu, Xinyi
%A Chen, Zhiyun
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F qiu-chen-2025-knowledge
%X The significant of Computerized Adaptive Testing (CAT) is self-evident in contemporary Intelligent Tutoring Systems (ITSs) which aims to recommend suitable questions for students based on their knowledge state. In recent years, Graph Neural Networks (GNNs) and Reinforcement Learning (RL) methods have been increasingly applied to CAT. While these approaches have achieved empirical success, they still face limitations, such as inadequate handling of concept relevance when multiple concepts are involved and incomplete evaluation metrics. To address these issues, we propose a Knowledge Graph Reasoning-Based Model for CAT (KGCAT), which leverages the reasoning power of knowledge graphs (KGs) to capture the semantic and relational information between concepts and questions while focusing on reducing the noise caused by concepts with low relevance by utilizing mutual information. Additionally, a multi-objective reinforcement learning framework is employed to incorporate multiple evaluation objectives, further refining question selection and improving the overall effectiveness of CAT. Empirical evaluations conducted on three authentic educational datasets demonstrate that the proposed model outperforms existing methods in both accuracy and interpretability.
%U https://aclanthology.org/2025.coling-main.354/
%P 5295-5304
Markdown (Informal)
[A Knowledge Graph Reasoning-Based Model for Computerized Adaptive Testing](https://aclanthology.org/2025.coling-main.354/) (Qiu & Chen, COLING 2025)
ACL