@inproceedings{wu-etal-2025-edge,
title = "Edge-free but Structure-aware: Prototype-Guided Knowledge Distillation from {GNN}s to {MLP}s",
author = "Wu, Taiqiang and
Zhao, Zhe and
Wang, Jiahao and
Bai, Xingyu and
Wang, Lei and
Wong, Ngai and
Yang, Yujiu",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.379/",
pages = "5656--5667",
abstract = "Distilling high-accuracy Graph Neural Networks (GNNs) to low-latency multilayer perceptrons (MLPs) on graph tasks has become a hot research topic. However, conventional MLP learning relies almost exclusively on graph nodes and fails to effectively capture the graph structural information. Previous methods address this issue by processing graph edges into extra inputs for MLPs, but such graph structures may be unavailable for various scenarios. To this end, we propose Prototype-Guided Knowledge Distillation (PGKD), which does not require graph edges (edge-free setting) yet learns structure-aware MLPs. Our insight is to distill graph structural information from GNNs. Specifically, we first employ the class prototypes to analyze the impact of graph structures on GNN teachers, and then design two losses to distill such information from GNNs to MLPs. Experimental results on popular graph benchmarks demonstrate the effectiveness and robustness of the proposed PGKD."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2025-edge">
<titleInfo>
<title>Edge-free but Structure-aware: Prototype-Guided Knowledge Distillation from GNNs to MLPs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Taiqiang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhe</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyu</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yujiu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distilling high-accuracy Graph Neural Networks (GNNs) to low-latency multilayer perceptrons (MLPs) on graph tasks has become a hot research topic. However, conventional MLP learning relies almost exclusively on graph nodes and fails to effectively capture the graph structural information. Previous methods address this issue by processing graph edges into extra inputs for MLPs, but such graph structures may be unavailable for various scenarios. To this end, we propose Prototype-Guided Knowledge Distillation (PGKD), which does not require graph edges (edge-free setting) yet learns structure-aware MLPs. Our insight is to distill graph structural information from GNNs. Specifically, we first employ the class prototypes to analyze the impact of graph structures on GNN teachers, and then design two losses to distill such information from GNNs to MLPs. Experimental results on popular graph benchmarks demonstrate the effectiveness and robustness of the proposed PGKD.</abstract>
<identifier type="citekey">wu-etal-2025-edge</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.379/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>5656</start>
<end>5667</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Edge-free but Structure-aware: Prototype-Guided Knowledge Distillation from GNNs to MLPs
%A Wu, Taiqiang
%A Zhao, Zhe
%A Wang, Jiahao
%A Bai, Xingyu
%A Wang, Lei
%A Wong, Ngai
%A Yang, Yujiu
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wu-etal-2025-edge
%X Distilling high-accuracy Graph Neural Networks (GNNs) to low-latency multilayer perceptrons (MLPs) on graph tasks has become a hot research topic. However, conventional MLP learning relies almost exclusively on graph nodes and fails to effectively capture the graph structural information. Previous methods address this issue by processing graph edges into extra inputs for MLPs, but such graph structures may be unavailable for various scenarios. To this end, we propose Prototype-Guided Knowledge Distillation (PGKD), which does not require graph edges (edge-free setting) yet learns structure-aware MLPs. Our insight is to distill graph structural information from GNNs. Specifically, we first employ the class prototypes to analyze the impact of graph structures on GNN teachers, and then design two losses to distill such information from GNNs to MLPs. Experimental results on popular graph benchmarks demonstrate the effectiveness and robustness of the proposed PGKD.
%U https://aclanthology.org/2025.coling-main.379/
%P 5656-5667
Markdown (Informal)
[Edge-free but Structure-aware: Prototype-Guided Knowledge Distillation from GNNs to MLPs](https://aclanthology.org/2025.coling-main.379/) (Wu et al., COLING 2025)
ACL