@inproceedings{steindl-etal-2025-coprus,
title = "{C}o{P}r{US}: Consistency Preserving Utterance Synthesis towards more realistic benchmark dialogues",
author = {Steindl, Sebastian and
Sch{\"a}fer, Ulrich and
Ludwig, Bernd},
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.394/",
pages = "5902--5917",
abstract = "Large-scale Wizard-Of-Oz dialogue datasets have enabled the training of deep learning-based dialogue systems. While they are successful as benchmark datasets, they lack certain types of utterances, which would make them more realistic. In this work, we investigate the creation of synthetic communication errors in an automatic pipeline. Based on linguistic theory, we propose and follow a simple error taxonomy. We focus on three types of miscommunications that could happen in real-world dialogues but are underrepresented in the benchmark dataset: misunderstandings, non-understandings and vaguely related questions. Our two-step approach uses a state-of-the-art Large Language Model (LLM) to first create the error and secondly the repairing utterance. We perform Language Model-based evaluation to ensure the quality of the generated utterances. We apply the method to the MultiWOZ dataset and evaluate it both qualitatively and empirically as well as with human judges. Our results indicate that current LLMs can aid in adding post-hoc miscommunications to benchmark datasets as a form of data augmentation. We publish the resulting dataset, in which nearly 1900 dialogues have been modified, as CoPrUS-MultiWOZ to facilitate future work on dialogue systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="steindl-etal-2025-coprus">
<titleInfo>
<title>CoPrUS: Consistency Preserving Utterance Synthesis towards more realistic benchmark dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Steindl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulrich</namePart>
<namePart type="family">Schäfer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Ludwig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large-scale Wizard-Of-Oz dialogue datasets have enabled the training of deep learning-based dialogue systems. While they are successful as benchmark datasets, they lack certain types of utterances, which would make them more realistic. In this work, we investigate the creation of synthetic communication errors in an automatic pipeline. Based on linguistic theory, we propose and follow a simple error taxonomy. We focus on three types of miscommunications that could happen in real-world dialogues but are underrepresented in the benchmark dataset: misunderstandings, non-understandings and vaguely related questions. Our two-step approach uses a state-of-the-art Large Language Model (LLM) to first create the error and secondly the repairing utterance. We perform Language Model-based evaluation to ensure the quality of the generated utterances. We apply the method to the MultiWOZ dataset and evaluate it both qualitatively and empirically as well as with human judges. Our results indicate that current LLMs can aid in adding post-hoc miscommunications to benchmark datasets as a form of data augmentation. We publish the resulting dataset, in which nearly 1900 dialogues have been modified, as CoPrUS-MultiWOZ to facilitate future work on dialogue systems.</abstract>
<identifier type="citekey">steindl-etal-2025-coprus</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.394/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>5902</start>
<end>5917</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoPrUS: Consistency Preserving Utterance Synthesis towards more realistic benchmark dialogues
%A Steindl, Sebastian
%A Schäfer, Ulrich
%A Ludwig, Bernd
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F steindl-etal-2025-coprus
%X Large-scale Wizard-Of-Oz dialogue datasets have enabled the training of deep learning-based dialogue systems. While they are successful as benchmark datasets, they lack certain types of utterances, which would make them more realistic. In this work, we investigate the creation of synthetic communication errors in an automatic pipeline. Based on linguistic theory, we propose and follow a simple error taxonomy. We focus on three types of miscommunications that could happen in real-world dialogues but are underrepresented in the benchmark dataset: misunderstandings, non-understandings and vaguely related questions. Our two-step approach uses a state-of-the-art Large Language Model (LLM) to first create the error and secondly the repairing utterance. We perform Language Model-based evaluation to ensure the quality of the generated utterances. We apply the method to the MultiWOZ dataset and evaluate it both qualitatively and empirically as well as with human judges. Our results indicate that current LLMs can aid in adding post-hoc miscommunications to benchmark datasets as a form of data augmentation. We publish the resulting dataset, in which nearly 1900 dialogues have been modified, as CoPrUS-MultiWOZ to facilitate future work on dialogue systems.
%U https://aclanthology.org/2025.coling-main.394/
%P 5902-5917
Markdown (Informal)
[CoPrUS: Consistency Preserving Utterance Synthesis towards more realistic benchmark dialogues](https://aclanthology.org/2025.coling-main.394/) (Steindl et al., COLING 2025)
ACL