@inproceedings{chen-etal-2025-leveraging,
title = "Leveraging Taxonomy and {LLM}s for Improved Multimodal Hierarchical Classification",
author = "Chen, Shijing and
Bouadjenek, Mohamed Reda and
Naseem, Usman and
Suleiman, Basem and
Jameel, Shoaib and
Salim, Flora and
Hacid, Hakim and
Razzak, Imran",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.417/",
pages = "6244--6254",
abstract = "Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with n independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a Multi-modal E-commerce Product dataset with various hierarchical levels- demonstrated a significant performance improvement compared to conventional LLMs structure."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-leveraging">
<titleInfo>
<title>Leveraging Taxonomy and LLMs for Improved Multimodal Hierarchical Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shijing</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="given">Reda</namePart>
<namePart type="family">Bouadjenek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Usman</namePart>
<namePart type="family">Naseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Basem</namePart>
<namePart type="family">Suleiman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoaib</namePart>
<namePart type="family">Jameel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flora</namePart>
<namePart type="family">Salim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hakim</namePart>
<namePart type="family">Hacid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imran</namePart>
<namePart type="family">Razzak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with n independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a Multi-modal E-commerce Product dataset with various hierarchical levels- demonstrated a significant performance improvement compared to conventional LLMs structure.</abstract>
<identifier type="citekey">chen-etal-2025-leveraging</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.417/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>6244</start>
<end>6254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Taxonomy and LLMs for Improved Multimodal Hierarchical Classification
%A Chen, Shijing
%A Bouadjenek, Mohamed Reda
%A Naseem, Usman
%A Suleiman, Basem
%A Jameel, Shoaib
%A Salim, Flora
%A Hacid, Hakim
%A Razzak, Imran
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F chen-etal-2025-leveraging
%X Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with n independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a Multi-modal E-commerce Product dataset with various hierarchical levels- demonstrated a significant performance improvement compared to conventional LLMs structure.
%U https://aclanthology.org/2025.coling-main.417/
%P 6244-6254
Markdown (Informal)
[Leveraging Taxonomy and LLMs for Improved Multimodal Hierarchical Classification](https://aclanthology.org/2025.coling-main.417/) (Chen et al., COLING 2025)
ACL
- Shijing Chen, Mohamed Reda Bouadjenek, Usman Naseem, Basem Suleiman, Shoaib Jameel, Flora Salim, Hakim Hacid, and Imran Razzak. 2025. Leveraging Taxonomy and LLMs for Improved Multimodal Hierarchical Classification. In Proceedings of the 31st International Conference on Computational Linguistics, pages 6244–6254, Abu Dhabi, UAE. Association for Computational Linguistics.