@inproceedings{pei-etal-2025-selfprompt,
title = "{S}elf{P}rompt: Autonomously Evaluating {LLM} Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts",
author = "Pei, Aihua and
Yang, Zehua and
Zhu, Shunan and
Cheng, Ruoxi and
Jia, Ju",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.457/",
pages = "6840--6854",
abstract = "Traditional methods for evaluating the robustness of large language models (LLMs) often rely on standardized benchmarks, which can escalate costs and limit evaluations across varied domains. This paper introduces a novel framework designed to autonomously evaluate the robustness of LLMs by incorporating refined adversarial prompts and domain-constrained knowledge guidelines in the form of knowledge graphs. Our method systematically generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts, enhancing the relevance and challenge of the evaluation. These prompts, generated by the LLM itself and tailored to evaluate its own robustness, undergo a rigorous filtering and refinement process, ensuring that only those with high textual fluency and semantic fidelity are used. This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks. We assess the effectiveness of our framework through extensive testing on both proprietary models like ChatGPT and open-source models such as Llama-3.1, Phi-3, and Mistral. Results confirm that our approach not only reduces dependency on conventional data but also provides a targeted and efficient means of evaluating LLM robustness in constrained domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pei-etal-2025-selfprompt">
<titleInfo>
<title>SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aihua</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zehua</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shunan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruoxi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ju</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditional methods for evaluating the robustness of large language models (LLMs) often rely on standardized benchmarks, which can escalate costs and limit evaluations across varied domains. This paper introduces a novel framework designed to autonomously evaluate the robustness of LLMs by incorporating refined adversarial prompts and domain-constrained knowledge guidelines in the form of knowledge graphs. Our method systematically generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts, enhancing the relevance and challenge of the evaluation. These prompts, generated by the LLM itself and tailored to evaluate its own robustness, undergo a rigorous filtering and refinement process, ensuring that only those with high textual fluency and semantic fidelity are used. This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks. We assess the effectiveness of our framework through extensive testing on both proprietary models like ChatGPT and open-source models such as Llama-3.1, Phi-3, and Mistral. Results confirm that our approach not only reduces dependency on conventional data but also provides a targeted and efficient means of evaluating LLM robustness in constrained domains.</abstract>
<identifier type="citekey">pei-etal-2025-selfprompt</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.457/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>6840</start>
<end>6854</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts
%A Pei, Aihua
%A Yang, Zehua
%A Zhu, Shunan
%A Cheng, Ruoxi
%A Jia, Ju
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F pei-etal-2025-selfprompt
%X Traditional methods for evaluating the robustness of large language models (LLMs) often rely on standardized benchmarks, which can escalate costs and limit evaluations across varied domains. This paper introduces a novel framework designed to autonomously evaluate the robustness of LLMs by incorporating refined adversarial prompts and domain-constrained knowledge guidelines in the form of knowledge graphs. Our method systematically generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts, enhancing the relevance and challenge of the evaluation. These prompts, generated by the LLM itself and tailored to evaluate its own robustness, undergo a rigorous filtering and refinement process, ensuring that only those with high textual fluency and semantic fidelity are used. This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks. We assess the effectiveness of our framework through extensive testing on both proprietary models like ChatGPT and open-source models such as Llama-3.1, Phi-3, and Mistral. Results confirm that our approach not only reduces dependency on conventional data but also provides a targeted and efficient means of evaluating LLM robustness in constrained domains.
%U https://aclanthology.org/2025.coling-main.457/
%P 6840-6854
Markdown (Informal)
[SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts](https://aclanthology.org/2025.coling-main.457/) (Pei et al., COLING 2025)
ACL