@inproceedings{asada-miwa-2025-addressing,
title = "Addressing the Training-Inference Discrepancy in Discrete Diffusion for Text Generation",
author = "Asada, Masaki and
Miwa, Makoto",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.477/",
pages = "7156--7164",
abstract = "This study addresses the discrepancy between training and inference in discrete diffusion models for text generation. We propose two novel strategies: (1) a training schema that considers two-step diffusion processes, allowing the model to use its own predicted output as input for subsequent steps during training and (2) a scheduling technique that gradually increases the probability of using self-generated text as training progresses. Experiments conducted on four widely used text generation benchmark datasets demonstrate that both proposed strategies improve the performance of discrete diffusion models in text generation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asada-miwa-2025-addressing">
<titleInfo>
<title>Addressing the Training-Inference Discrepancy in Discrete Diffusion for Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaki</namePart>
<namePart type="family">Asada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study addresses the discrepancy between training and inference in discrete diffusion models for text generation. We propose two novel strategies: (1) a training schema that considers two-step diffusion processes, allowing the model to use its own predicted output as input for subsequent steps during training and (2) a scheduling technique that gradually increases the probability of using self-generated text as training progresses. Experiments conducted on four widely used text generation benchmark datasets demonstrate that both proposed strategies improve the performance of discrete diffusion models in text generation.</abstract>
<identifier type="citekey">asada-miwa-2025-addressing</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.477/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>7156</start>
<end>7164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Addressing the Training-Inference Discrepancy in Discrete Diffusion for Text Generation
%A Asada, Masaki
%A Miwa, Makoto
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F asada-miwa-2025-addressing
%X This study addresses the discrepancy between training and inference in discrete diffusion models for text generation. We propose two novel strategies: (1) a training schema that considers two-step diffusion processes, allowing the model to use its own predicted output as input for subsequent steps during training and (2) a scheduling technique that gradually increases the probability of using self-generated text as training progresses. Experiments conducted on four widely used text generation benchmark datasets demonstrate that both proposed strategies improve the performance of discrete diffusion models in text generation.
%U https://aclanthology.org/2025.coling-main.477/
%P 7156-7164
Markdown (Informal)
[Addressing the Training-Inference Discrepancy in Discrete Diffusion for Text Generation](https://aclanthology.org/2025.coling-main.477/) (Asada & Miwa, COLING 2025)
ACL