@inproceedings{heo-etal-2025-llms,
title = "{LLM}s on interactive feature collections with implicit dynamic decision strategy",
author = "Heo, Juyeon and
Piratla, Vihari and
Lee, Kyunghyun and
Joh, Hyonkeun and
Weller, Adrian",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.53/",
pages = "786--811",
abstract = "In real-world contexts such as medical diagnosis and business consulting, effective problem-solving often requires gathering relevant information through interactions and targeted questioning to pinpoint the root cause of a problem. However, Large Language Models (LLMs) often struggle to efficiently narrow down the search space, leading to either missing key information or asking redundant questions when guided by implicit methods like Chain-of-Thought (CoT). Some approaches employ external engineered systems to guide reasoning paths, but these methods may not fully utilize the inherent problem-solving capabilities of LLMs and often require multiple expensive API calls. This study explores how we can implicitly guide LLMs to enhance their interactive feature collection abilities within a single prompt. Instead of employing explicit search algorithms or step-by-step external guidance, we provide high-level guidelines that allow LLMs to dynamically adjust their strategies and iteratively refine their decision-making processes independently. Evaluations on synthetic 20-Questions games and real-world scenarios, including business and medical diagnosis cases, demonstrate that LLMs guided by these strategies perform more effective interactive feature collection, asking fewer and more strategic questions and achieving better problem-solving efficiency."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heo-etal-2025-llms">
<titleInfo>
<title>LLMs on interactive feature collections with implicit dynamic decision strategy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juyeon</namePart>
<namePart type="family">Heo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vihari</namePart>
<namePart type="family">Piratla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyonkeun</namePart>
<namePart type="family">Joh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="family">Weller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In real-world contexts such as medical diagnosis and business consulting, effective problem-solving often requires gathering relevant information through interactions and targeted questioning to pinpoint the root cause of a problem. However, Large Language Models (LLMs) often struggle to efficiently narrow down the search space, leading to either missing key information or asking redundant questions when guided by implicit methods like Chain-of-Thought (CoT). Some approaches employ external engineered systems to guide reasoning paths, but these methods may not fully utilize the inherent problem-solving capabilities of LLMs and often require multiple expensive API calls. This study explores how we can implicitly guide LLMs to enhance their interactive feature collection abilities within a single prompt. Instead of employing explicit search algorithms or step-by-step external guidance, we provide high-level guidelines that allow LLMs to dynamically adjust their strategies and iteratively refine their decision-making processes independently. Evaluations on synthetic 20-Questions games and real-world scenarios, including business and medical diagnosis cases, demonstrate that LLMs guided by these strategies perform more effective interactive feature collection, asking fewer and more strategic questions and achieving better problem-solving efficiency.</abstract>
<identifier type="citekey">heo-etal-2025-llms</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.53/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>786</start>
<end>811</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLMs on interactive feature collections with implicit dynamic decision strategy
%A Heo, Juyeon
%A Piratla, Vihari
%A Lee, Kyunghyun
%A Joh, Hyonkeun
%A Weller, Adrian
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F heo-etal-2025-llms
%X In real-world contexts such as medical diagnosis and business consulting, effective problem-solving often requires gathering relevant information through interactions and targeted questioning to pinpoint the root cause of a problem. However, Large Language Models (LLMs) often struggle to efficiently narrow down the search space, leading to either missing key information or asking redundant questions when guided by implicit methods like Chain-of-Thought (CoT). Some approaches employ external engineered systems to guide reasoning paths, but these methods may not fully utilize the inherent problem-solving capabilities of LLMs and often require multiple expensive API calls. This study explores how we can implicitly guide LLMs to enhance their interactive feature collection abilities within a single prompt. Instead of employing explicit search algorithms or step-by-step external guidance, we provide high-level guidelines that allow LLMs to dynamically adjust their strategies and iteratively refine their decision-making processes independently. Evaluations on synthetic 20-Questions games and real-world scenarios, including business and medical diagnosis cases, demonstrate that LLMs guided by these strategies perform more effective interactive feature collection, asking fewer and more strategic questions and achieving better problem-solving efficiency.
%U https://aclanthology.org/2025.coling-main.53/
%P 786-811
Markdown (Informal)
[LLMs on interactive feature collections with implicit dynamic decision strategy](https://aclanthology.org/2025.coling-main.53/) (Heo et al., COLING 2025)
ACL