@inproceedings{gorur-etal-2025-large,
title = "Can Large Language Models perform Relation-based Argument Mining?",
author = "Gorur, Deniz and
Rago, Antonio and
Toni, Francesca",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.569/",
pages = "8518--8534",
abstract = "Relation-based Argument Mining (RbAM) is the process of automatically determining agreement (support) and disagreement (attack) relations amongst textual arguments (in the binary prediction setting), or neither relation (in the ternary prediction setting). As the number of platforms supporting online debate increases, the need for RbAM becomes ever more urgent, especially in support of downstream tasks. RbAM is a challenging classification task, with existing state-of-the-art methods, based on Language Models (LMs), failing to perform satisfactorily across different datasets. In this paper, we show that general-purpose Large LMs (LLMs), appropriately primed and prompted, can significantly outperform the best performing (RoBERTa-based) baseline. Specifically, we experiment with two open-source LLMs (Llama-2 and Mistral) and with GPT-3.5-turbo on several datasets for (binary and ternary) RbAM, as well as with GPT-4o-mini on samples (to limit costs) from the datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gorur-etal-2025-large">
<titleInfo>
<title>Can Large Language Models perform Relation-based Argument Mining?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deniz</namePart>
<namePart type="family">Gorur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Rago</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesca</namePart>
<namePart type="family">Toni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relation-based Argument Mining (RbAM) is the process of automatically determining agreement (support) and disagreement (attack) relations amongst textual arguments (in the binary prediction setting), or neither relation (in the ternary prediction setting). As the number of platforms supporting online debate increases, the need for RbAM becomes ever more urgent, especially in support of downstream tasks. RbAM is a challenging classification task, with existing state-of-the-art methods, based on Language Models (LMs), failing to perform satisfactorily across different datasets. In this paper, we show that general-purpose Large LMs (LLMs), appropriately primed and prompted, can significantly outperform the best performing (RoBERTa-based) baseline. Specifically, we experiment with two open-source LLMs (Llama-2 and Mistral) and with GPT-3.5-turbo on several datasets for (binary and ternary) RbAM, as well as with GPT-4o-mini on samples (to limit costs) from the datasets.</abstract>
<identifier type="citekey">gorur-etal-2025-large</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.569/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>8518</start>
<end>8534</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Large Language Models perform Relation-based Argument Mining?
%A Gorur, Deniz
%A Rago, Antonio
%A Toni, Francesca
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F gorur-etal-2025-large
%X Relation-based Argument Mining (RbAM) is the process of automatically determining agreement (support) and disagreement (attack) relations amongst textual arguments (in the binary prediction setting), or neither relation (in the ternary prediction setting). As the number of platforms supporting online debate increases, the need for RbAM becomes ever more urgent, especially in support of downstream tasks. RbAM is a challenging classification task, with existing state-of-the-art methods, based on Language Models (LMs), failing to perform satisfactorily across different datasets. In this paper, we show that general-purpose Large LMs (LLMs), appropriately primed and prompted, can significantly outperform the best performing (RoBERTa-based) baseline. Specifically, we experiment with two open-source LLMs (Llama-2 and Mistral) and with GPT-3.5-turbo on several datasets for (binary and ternary) RbAM, as well as with GPT-4o-mini on samples (to limit costs) from the datasets.
%U https://aclanthology.org/2025.coling-main.569/
%P 8518-8534
Markdown (Informal)
[Can Large Language Models perform Relation-based Argument Mining?](https://aclanthology.org/2025.coling-main.569/) (Gorur et al., COLING 2025)
ACL