@inproceedings{pastor-etal-2025-enhancing,
title = "Enhancing Discourse Parsing for Local Structures from Social Media with {LLM}-Generated Data",
author = "Pastor, Martial and
Oostdijk, Nelleke and
Martin-Rodilla, Patricia and
Parapar, Javier",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.584/",
pages = "8739--8748",
abstract = "We explore the use of discourse parsers for extracting a particular discourse structure in a real-world social media scenario. Specifically, we focus on enhancing parser performance through the integration of synthetic data generated by large language models (LLMs). We conduct experiments using a newly developed dataset of 1,170 local RST discourse structures, including 900 synthetic and 270 gold examples, covering three social media platforms: online news comments sections, a discussion forum (Reddit), and a social media messaging platform (Twitter). Our primary goal is to assess the impact of LLM-generated synthetic training data on parser performance in a raw text setting without pre-identified discourse units. While both top-down and bottom-up RST architectures greatly benefit from synthetic data, challenges remain in classifying evaluative discourse structures."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pastor-etal-2025-enhancing">
<titleInfo>
<title>Enhancing Discourse Parsing for Local Structures from Social Media with LLM-Generated Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martial</namePart>
<namePart type="family">Pastor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nelleke</namePart>
<namePart type="family">Oostdijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Martin-Rodilla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Javier</namePart>
<namePart type="family">Parapar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the use of discourse parsers for extracting a particular discourse structure in a real-world social media scenario. Specifically, we focus on enhancing parser performance through the integration of synthetic data generated by large language models (LLMs). We conduct experiments using a newly developed dataset of 1,170 local RST discourse structures, including 900 synthetic and 270 gold examples, covering three social media platforms: online news comments sections, a discussion forum (Reddit), and a social media messaging platform (Twitter). Our primary goal is to assess the impact of LLM-generated synthetic training data on parser performance in a raw text setting without pre-identified discourse units. While both top-down and bottom-up RST architectures greatly benefit from synthetic data, challenges remain in classifying evaluative discourse structures.</abstract>
<identifier type="citekey">pastor-etal-2025-enhancing</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.584/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>8739</start>
<end>8748</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Discourse Parsing for Local Structures from Social Media with LLM-Generated Data
%A Pastor, Martial
%A Oostdijk, Nelleke
%A Martin-Rodilla, Patricia
%A Parapar, Javier
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F pastor-etal-2025-enhancing
%X We explore the use of discourse parsers for extracting a particular discourse structure in a real-world social media scenario. Specifically, we focus on enhancing parser performance through the integration of synthetic data generated by large language models (LLMs). We conduct experiments using a newly developed dataset of 1,170 local RST discourse structures, including 900 synthetic and 270 gold examples, covering three social media platforms: online news comments sections, a discussion forum (Reddit), and a social media messaging platform (Twitter). Our primary goal is to assess the impact of LLM-generated synthetic training data on parser performance in a raw text setting without pre-identified discourse units. While both top-down and bottom-up RST architectures greatly benefit from synthetic data, challenges remain in classifying evaluative discourse structures.
%U https://aclanthology.org/2025.coling-main.584/
%P 8739-8748
Markdown (Informal)
[Enhancing Discourse Parsing for Local Structures from Social Media with LLM-Generated Data](https://aclanthology.org/2025.coling-main.584/) (Pastor et al., COLING 2025)
ACL