@inproceedings{dong-etal-2025-protod,
title = "{P}ro{TOD}: Proactive Task-oriented Dialogue System Based on Large Language Model",
author = "Dong, Wenjie and
Chen, Sirong and
Yang, Yan",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.614/",
pages = "9147--9164",
abstract = "Large Language Model (LLM)-based Task-Oriented Dialogue (TOD) systems show promising performance in helping users achieve specific goals in a zero-shot setting. However, existing systems engage with users in a reactive manner, relying on a basic single-query mechanism with the knowledge base and employing passive policy planning. The proactive TOD systems, which can provide potentially helpful information and plan cross-domain multi-task dialogue policies, have not been well studied. In addition, effective evaluation methods are also lacking. To address these issues, we propose ProTOD, a novel LLM-based proactive TOD framework designed to improve system proactivity and goal completion. First, we design an adaptive exploratory retrieval mechanism to dynamically navigate domain knowledge. Second, we introduce a two-stage passive-to-proactive policy planner that effectively organizes knowledge and actions relationship. Finally, we develop two distinct user simulators with different personalities to simulate real-world interactions and propose a new error measure called Human-targeted Policy Edit Rate (HPER) for evaluation. Experimental results show that ProTOD achieves state-of-the-art (SOTA) performance, improving goal completion rates by 10{\%} while significantly enhancing the proactive engagement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dong-etal-2025-protod">
<titleInfo>
<title>ProTOD: Proactive Task-oriented Dialogue System Based on Large Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Model (LLM)-based Task-Oriented Dialogue (TOD) systems show promising performance in helping users achieve specific goals in a zero-shot setting. However, existing systems engage with users in a reactive manner, relying on a basic single-query mechanism with the knowledge base and employing passive policy planning. The proactive TOD systems, which can provide potentially helpful information and plan cross-domain multi-task dialogue policies, have not been well studied. In addition, effective evaluation methods are also lacking. To address these issues, we propose ProTOD, a novel LLM-based proactive TOD framework designed to improve system proactivity and goal completion. First, we design an adaptive exploratory retrieval mechanism to dynamically navigate domain knowledge. Second, we introduce a two-stage passive-to-proactive policy planner that effectively organizes knowledge and actions relationship. Finally, we develop two distinct user simulators with different personalities to simulate real-world interactions and propose a new error measure called Human-targeted Policy Edit Rate (HPER) for evaluation. Experimental results show that ProTOD achieves state-of-the-art (SOTA) performance, improving goal completion rates by 10% while significantly enhancing the proactive engagement.</abstract>
<identifier type="citekey">dong-etal-2025-protod</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.614/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>9147</start>
<end>9164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ProTOD: Proactive Task-oriented Dialogue System Based on Large Language Model
%A Dong, Wenjie
%A Chen, Sirong
%A Yang, Yan
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F dong-etal-2025-protod
%X Large Language Model (LLM)-based Task-Oriented Dialogue (TOD) systems show promising performance in helping users achieve specific goals in a zero-shot setting. However, existing systems engage with users in a reactive manner, relying on a basic single-query mechanism with the knowledge base and employing passive policy planning. The proactive TOD systems, which can provide potentially helpful information and plan cross-domain multi-task dialogue policies, have not been well studied. In addition, effective evaluation methods are also lacking. To address these issues, we propose ProTOD, a novel LLM-based proactive TOD framework designed to improve system proactivity and goal completion. First, we design an adaptive exploratory retrieval mechanism to dynamically navigate domain knowledge. Second, we introduce a two-stage passive-to-proactive policy planner that effectively organizes knowledge and actions relationship. Finally, we develop two distinct user simulators with different personalities to simulate real-world interactions and propose a new error measure called Human-targeted Policy Edit Rate (HPER) for evaluation. Experimental results show that ProTOD achieves state-of-the-art (SOTA) performance, improving goal completion rates by 10% while significantly enhancing the proactive engagement.
%U https://aclanthology.org/2025.coling-main.614/
%P 9147-9164
Markdown (Informal)
[ProTOD: Proactive Task-oriented Dialogue System Based on Large Language Model](https://aclanthology.org/2025.coling-main.614/) (Dong et al., COLING 2025)
ACL