@inproceedings{panagiotopoulos-etal-2025-riscore,
title = "{RISCORE}: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation",
author = "Panagiotopoulos, Ioannis and
Filandrianos, George and
Lymperaiou, Maria and
Stamou, Giorgos",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.633/",
pages = "9431--9455",
abstract = "Riddle-solving requires advanced reasoning skills, pushing Large Language Models (LLMs) to engage in abstract thinking and creative problem-solving, often revealing limitations in their cognitive abilities. In this paper, we examine the riddle-solving capabilities of LLMs using a multiple-choice format, exploring how different prompting techniques impact performance on riddles that demand diverse reasoning skills. To enhance results, we introduce RISCORE (RIddle Solving with COntext REcontruciton) a novel fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles in conjunction with the original examples to create few-shot exemplars. Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks, surpassing traditional exemplar selection strategies across a variety of few-shot settings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="panagiotopoulos-etal-2025-riscore">
<titleInfo>
<title>RISCORE: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Panagiotopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Filandrianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Lymperaiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgos</namePart>
<namePart type="family">Stamou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Riddle-solving requires advanced reasoning skills, pushing Large Language Models (LLMs) to engage in abstract thinking and creative problem-solving, often revealing limitations in their cognitive abilities. In this paper, we examine the riddle-solving capabilities of LLMs using a multiple-choice format, exploring how different prompting techniques impact performance on riddles that demand diverse reasoning skills. To enhance results, we introduce RISCORE (RIddle Solving with COntext REcontruciton) a novel fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles in conjunction with the original examples to create few-shot exemplars. Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks, surpassing traditional exemplar selection strategies across a variety of few-shot settings.</abstract>
<identifier type="citekey">panagiotopoulos-etal-2025-riscore</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.633/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>9431</start>
<end>9455</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RISCORE: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation
%A Panagiotopoulos, Ioannis
%A Filandrianos, George
%A Lymperaiou, Maria
%A Stamou, Giorgos
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F panagiotopoulos-etal-2025-riscore
%X Riddle-solving requires advanced reasoning skills, pushing Large Language Models (LLMs) to engage in abstract thinking and creative problem-solving, often revealing limitations in their cognitive abilities. In this paper, we examine the riddle-solving capabilities of LLMs using a multiple-choice format, exploring how different prompting techniques impact performance on riddles that demand diverse reasoning skills. To enhance results, we introduce RISCORE (RIddle Solving with COntext REcontruciton) a novel fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles in conjunction with the original examples to create few-shot exemplars. Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks, surpassing traditional exemplar selection strategies across a variety of few-shot settings.
%U https://aclanthology.org/2025.coling-main.633/
%P 9431-9455
Markdown (Informal)
[RISCORE: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation](https://aclanthology.org/2025.coling-main.633/) (Panagiotopoulos et al., COLING 2025)
ACL