From Facts to Insights: A Study on the Generation and Evaluation of Analytical Reports for Deciphering Earnings Calls

Tomas Goldsack, Yang Wang, Chenghua Lin, Chung-Chi Chen


Abstract
This paper explores the use of Large Language Models (LLMs) in the generation and evaluation of analytical reports derived from Earnings Calls (ECs). Addressing a current gap in research, we explore the generation of analytical reports with LLMs in a multi-agent framework, designing specialized agents that introduce diverse viewpoints and desirable topics of analysis into the report generation process. Through multiple analyses, we examine the alignment between generated and human-written reports and the impact of both individual and collective agents. Our findings suggest that the introduction of additional agents results in more insightful reports, although reports generated by human experts remain preferred in the majority of cases. Finally, we address the challenging issue of report evaluation, we examine the limitations and strengths of LLMs in assessing the quality of generated reports in different settings, revealing a significant correlation with human experts across multiple dimensions.
Anthology ID:
2025.coling-main.705
Volume:
Proceedings of the 31st International Conference on Computational Linguistics
Month:
January
Year:
2025
Address:
Abu Dhabi, UAE
Editors:
Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert
Venue:
COLING
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
10576–10593
Language:
URL:
https://aclanthology.org/2025.coling-main.705/
DOI:
Bibkey:
Cite (ACL):
Tomas Goldsack, Yang Wang, Chenghua Lin, and Chung-Chi Chen. 2025. From Facts to Insights: A Study on the Generation and Evaluation of Analytical Reports for Deciphering Earnings Calls. In Proceedings of the 31st International Conference on Computational Linguistics, pages 10576–10593, Abu Dhabi, UAE. Association for Computational Linguistics.
Cite (Informal):
From Facts to Insights: A Study on the Generation and Evaluation of Analytical Reports for Deciphering Earnings Calls (Goldsack et al., COLING 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.coling-main.705.pdf