@inproceedings{hwang-etal-2025-sumie,
title = "{SUMIE}: A Synthetic Benchmark for Incremental Entity Summarization",
author = "Hwang, Eunjeong and
Zhou, Yichao and
Gunel, Beliz and
Wendt, James Bradley and
Tata, Sandeep",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.721/",
pages = "10839--10864",
abstract = "No existing dataset adequately tests how well language models can incrementally update entity summaries {--} a crucial ability as these models rapidly advance. The Incremental Entity Summarization (IES) task is vital for maintaining accurate, up-to-date knowledge. To address this, we introduce , a fully synthetic dataset designed to expose real-world IES challenges. This dataset addresses issues like incorrect entity association and incomplete information, capturing real-world complexity by generating diverse attributes, summaries, and unstructured paragraphs with 99{\%} alignment accuracy between generated summaries and paragraphs. Extensive experiments demonstrate the dataset`s difficulty {--} state-of-the-art LLMs struggle to update summaries with an F1 higher than 80.4{\%}. We will open-source the benchmark and the evaluation metrics to help the community make progress on IES tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hwang-etal-2025-sumie">
<titleInfo>
<title>SUMIE: A Synthetic Benchmark for Incremental Entity Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eunjeong</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beliz</namePart>
<namePart type="family">Gunel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">Bradley</namePart>
<namePart type="family">Wendt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Tata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>No existing dataset adequately tests how well language models can incrementally update entity summaries – a crucial ability as these models rapidly advance. The Incremental Entity Summarization (IES) task is vital for maintaining accurate, up-to-date knowledge. To address this, we introduce , a fully synthetic dataset designed to expose real-world IES challenges. This dataset addresses issues like incorrect entity association and incomplete information, capturing real-world complexity by generating diverse attributes, summaries, and unstructured paragraphs with 99% alignment accuracy between generated summaries and paragraphs. Extensive experiments demonstrate the dataset‘s difficulty – state-of-the-art LLMs struggle to update summaries with an F1 higher than 80.4%. We will open-source the benchmark and the evaluation metrics to help the community make progress on IES tasks.</abstract>
<identifier type="citekey">hwang-etal-2025-sumie</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.721/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10839</start>
<end>10864</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SUMIE: A Synthetic Benchmark for Incremental Entity Summarization
%A Hwang, Eunjeong
%A Zhou, Yichao
%A Gunel, Beliz
%A Wendt, James Bradley
%A Tata, Sandeep
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F hwang-etal-2025-sumie
%X No existing dataset adequately tests how well language models can incrementally update entity summaries – a crucial ability as these models rapidly advance. The Incremental Entity Summarization (IES) task is vital for maintaining accurate, up-to-date knowledge. To address this, we introduce , a fully synthetic dataset designed to expose real-world IES challenges. This dataset addresses issues like incorrect entity association and incomplete information, capturing real-world complexity by generating diverse attributes, summaries, and unstructured paragraphs with 99% alignment accuracy between generated summaries and paragraphs. Extensive experiments demonstrate the dataset‘s difficulty – state-of-the-art LLMs struggle to update summaries with an F1 higher than 80.4%. We will open-source the benchmark and the evaluation metrics to help the community make progress on IES tasks.
%U https://aclanthology.org/2025.coling-main.721/
%P 10839-10864
Markdown (Informal)
[SUMIE: A Synthetic Benchmark for Incremental Entity Summarization](https://aclanthology.org/2025.coling-main.721/) (Hwang et al., COLING 2025)
ACL