@inproceedings{mirza-tonelli-2016-catena,
title = "{CATENA}: {CA}usal and {TE}mporal relation extraction from {NA}tural language texts",
author = "Mirza, Paramita and
Tonelli, Sara",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1007/",
pages = "64--75",
abstract = "We present CATENA, a sieve-based system to perform temporal and causal relation extraction and classification from English texts, exploiting the interaction between the temporal and the causal model. We evaluate the performance of each sieve, showing that the rule-based, the machine-learned and the reasoning components all contribute to achieving state-of-the-art performance on TempEval-3 and TimeBank-Dense data. Although causal relations are much sparser than temporal ones, the architecture and the selected features are mostly suitable to serve both tasks. The effects of the interaction between the temporal and the causal components, although limited, yield promising results and confirm the tight connection between the temporal and the causal dimension of texts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mirza-tonelli-2016-catena">
<titleInfo>
<title>CATENA: CAusal and TEmporal relation extraction from NAtural language texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paramita</namePart>
<namePart type="family">Mirza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present CATENA, a sieve-based system to perform temporal and causal relation extraction and classification from English texts, exploiting the interaction between the temporal and the causal model. We evaluate the performance of each sieve, showing that the rule-based, the machine-learned and the reasoning components all contribute to achieving state-of-the-art performance on TempEval-3 and TimeBank-Dense data. Although causal relations are much sparser than temporal ones, the architecture and the selected features are mostly suitable to serve both tasks. The effects of the interaction between the temporal and the causal components, although limited, yield promising results and confirm the tight connection between the temporal and the causal dimension of texts.</abstract>
<identifier type="citekey">mirza-tonelli-2016-catena</identifier>
<location>
<url>https://aclanthology.org/C16-1007/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>64</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CATENA: CAusal and TEmporal relation extraction from NAtural language texts
%A Mirza, Paramita
%A Tonelli, Sara
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F mirza-tonelli-2016-catena
%X We present CATENA, a sieve-based system to perform temporal and causal relation extraction and classification from English texts, exploiting the interaction between the temporal and the causal model. We evaluate the performance of each sieve, showing that the rule-based, the machine-learned and the reasoning components all contribute to achieving state-of-the-art performance on TempEval-3 and TimeBank-Dense data. Although causal relations are much sparser than temporal ones, the architecture and the selected features are mostly suitable to serve both tasks. The effects of the interaction between the temporal and the causal components, although limited, yield promising results and confirm the tight connection between the temporal and the causal dimension of texts.
%U https://aclanthology.org/C16-1007/
%P 64-75
Markdown (Informal)
[CATENA: CAusal and TEmporal relation extraction from NAtural language texts](https://aclanthology.org/C16-1007/) (Mirza & Tonelli, COLING 2016)
ACL