@inproceedings{ren-zhang-2016-deceptive,
title = "Deceptive Opinion Spam Detection Using Neural Network",
author = "Ren, Yafeng and
Zhang, Yue",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1014/",
pages = "140--150",
abstract = "Deceptive opinion spam detection has attracted significant attention from both business and research communities. Existing approaches are based on manual discrete features, which can capture linguistic and psychological cues. However, such features fail to encode the semantic meaning of a document from the discourse perspective, which limits the performance. In this paper, we empirically explore a neural network model to learn document-level representation for detecting deceptive opinion spam. In particular, given a document, the model learns sentence representations with a convolutional neural network, which are combined using a gated recurrent neural network with attention mechanism to model discourse information and yield a document vector. Finally, the document representation is used directly as features to identify deceptive opinion spam. Experimental results on three domains (Hotel, Restaurant, and Doctor) show that our proposed method outperforms state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ren-zhang-2016-deceptive">
<titleInfo>
<title>Deceptive Opinion Spam Detection Using Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yafeng</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deceptive opinion spam detection has attracted significant attention from both business and research communities. Existing approaches are based on manual discrete features, which can capture linguistic and psychological cues. However, such features fail to encode the semantic meaning of a document from the discourse perspective, which limits the performance. In this paper, we empirically explore a neural network model to learn document-level representation for detecting deceptive opinion spam. In particular, given a document, the model learns sentence representations with a convolutional neural network, which are combined using a gated recurrent neural network with attention mechanism to model discourse information and yield a document vector. Finally, the document representation is used directly as features to identify deceptive opinion spam. Experimental results on three domains (Hotel, Restaurant, and Doctor) show that our proposed method outperforms state-of-the-art methods.</abstract>
<identifier type="citekey">ren-zhang-2016-deceptive</identifier>
<location>
<url>https://aclanthology.org/C16-1014/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>140</start>
<end>150</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deceptive Opinion Spam Detection Using Neural Network
%A Ren, Yafeng
%A Zhang, Yue
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F ren-zhang-2016-deceptive
%X Deceptive opinion spam detection has attracted significant attention from both business and research communities. Existing approaches are based on manual discrete features, which can capture linguistic and psychological cues. However, such features fail to encode the semantic meaning of a document from the discourse perspective, which limits the performance. In this paper, we empirically explore a neural network model to learn document-level representation for detecting deceptive opinion spam. In particular, given a document, the model learns sentence representations with a convolutional neural network, which are combined using a gated recurrent neural network with attention mechanism to model discourse information and yield a document vector. Finally, the document representation is used directly as features to identify deceptive opinion spam. Experimental results on three domains (Hotel, Restaurant, and Doctor) show that our proposed method outperforms state-of-the-art methods.
%U https://aclanthology.org/C16-1014/
%P 140-150
Markdown (Informal)
[Deceptive Opinion Spam Detection Using Neural Network](https://aclanthology.org/C16-1014/) (Ren & Zhang, COLING 2016)
ACL
- Yafeng Ren and Yue Zhang. 2016. Deceptive Opinion Spam Detection Using Neural Network. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 140–150, Osaka, Japan. The COLING 2016 Organizing Committee.