@inproceedings{takeda-komatani-2016-bayesian,
title = "{B}ayesian Language Model based on Mixture of Segmental Contexts for Spontaneous Utterances with Unexpected Words",
author = "Takeda, Ryu and
Komatani, Kazunori",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1016",
pages = "161--170",
abstract = "This paper describes a Bayesian language model for predicting spontaneous utterances. People sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of words in normal N-gram models. Our proposed model considers mixtures of possible segmental contexts, that is, a kind of context-word selection. It can reduce negative effects caused by unexpected words because it represents conditional occurrence probabilities of a word as weighted mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this approach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model. The generative process is achieved by combining the stick-breaking process and the process used in the variable order Pitman-Yor language model. Experimental evaluations revealed that our model outperformed contiguous N-gram models in terms of perplexity for noisy text including hesitations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="takeda-komatani-2016-bayesian">
<titleInfo>
<title>Bayesian Language Model based on Mixture of Segmental Contexts for Spontaneous Utterances with Unexpected Words</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryu</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a Bayesian language model for predicting spontaneous utterances. People sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of words in normal N-gram models. Our proposed model considers mixtures of possible segmental contexts, that is, a kind of context-word selection. It can reduce negative effects caused by unexpected words because it represents conditional occurrence probabilities of a word as weighted mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this approach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model. The generative process is achieved by combining the stick-breaking process and the process used in the variable order Pitman-Yor language model. Experimental evaluations revealed that our model outperformed contiguous N-gram models in terms of perplexity for noisy text including hesitations.</abstract>
<identifier type="citekey">takeda-komatani-2016-bayesian</identifier>
<location>
<url>https://aclanthology.org/C16-1016</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>161</start>
<end>170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bayesian Language Model based on Mixture of Segmental Contexts for Spontaneous Utterances with Unexpected Words
%A Takeda, Ryu
%A Komatani, Kazunori
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F takeda-komatani-2016-bayesian
%X This paper describes a Bayesian language model for predicting spontaneous utterances. People sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of words in normal N-gram models. Our proposed model considers mixtures of possible segmental contexts, that is, a kind of context-word selection. It can reduce negative effects caused by unexpected words because it represents conditional occurrence probabilities of a word as weighted mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this approach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model. The generative process is achieved by combining the stick-breaking process and the process used in the variable order Pitman-Yor language model. Experimental evaluations revealed that our model outperformed contiguous N-gram models in terms of perplexity for noisy text including hesitations.
%U https://aclanthology.org/C16-1016
%P 161-170
Markdown (Informal)
[Bayesian Language Model based on Mixture of Segmental Contexts for Spontaneous Utterances with Unexpected Words](https://aclanthology.org/C16-1016) (Takeda & Komatani, COLING 2016)
ACL