@inproceedings{bhatia-etal-2016-automatic,
title = "Automatic Labelling of Topics with Neural Embeddings",
author = "Bhatia, Shraey and
Lau, Jey Han and
Baldwin, Timothy",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1091",
pages = "953--963",
abstract = "Topics generated by topic models are typically represented as list of terms. To reduce the cognitive overhead of interpreting these topics for end-users, we propose labelling a topic with a succinct phrase that summarises its theme or idea. Using Wikipedia document titles as label candidates, we compute neural embeddings for documents and words to select the most relevant labels for topics. Comparing to a state-of-the-art topic labelling system, our methodology is simpler, more efficient and finds better topic labels.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhatia-etal-2016-automatic">
<titleInfo>
<title>Automatic Labelling of Topics with Neural Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shraey</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topics generated by topic models are typically represented as list of terms. To reduce the cognitive overhead of interpreting these topics for end-users, we propose labelling a topic with a succinct phrase that summarises its theme or idea. Using Wikipedia document titles as label candidates, we compute neural embeddings for documents and words to select the most relevant labels for topics. Comparing to a state-of-the-art topic labelling system, our methodology is simpler, more efficient and finds better topic labels.</abstract>
<identifier type="citekey">bhatia-etal-2016-automatic</identifier>
<location>
<url>https://aclanthology.org/C16-1091</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>953</start>
<end>963</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Labelling of Topics with Neural Embeddings
%A Bhatia, Shraey
%A Lau, Jey Han
%A Baldwin, Timothy
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F bhatia-etal-2016-automatic
%X Topics generated by topic models are typically represented as list of terms. To reduce the cognitive overhead of interpreting these topics for end-users, we propose labelling a topic with a succinct phrase that summarises its theme or idea. Using Wikipedia document titles as label candidates, we compute neural embeddings for documents and words to select the most relevant labels for topics. Comparing to a state-of-the-art topic labelling system, our methodology is simpler, more efficient and finds better topic labels.
%U https://aclanthology.org/C16-1091
%P 953-963
Markdown (Informal)
[Automatic Labelling of Topics with Neural Embeddings](https://aclanthology.org/C16-1091) (Bhatia et al., COLING 2016)
ACL
- Shraey Bhatia, Jey Han Lau, and Timothy Baldwin. 2016. Automatic Labelling of Topics with Neural Embeddings. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 953–963, Osaka, Japan. The COLING 2016 Organizing Committee.