@inproceedings{rama-2016-siamese,
title = "{S}iamese Convolutional Networks for Cognate Identification",
author = "Rama, Taraka",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1097",
pages = "1018--1027",
abstract = "In this paper, we present phoneme level Siamese convolutional networks for the task of pair-wise cognate identification. We represent a word as a two-dimensional matrix and employ a siamese convolutional network for learning deep representations. We present siamese architectures that jointly learn phoneme level feature representations and language relatedness from raw words for cognate identification. Compared to previous works, we train and test on larger and realistic datasets; and, show that siamese architectures consistently perform better than traditional linear classifier approach.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rama-2016-siamese">
<titleInfo>
<title>Siamese Convolutional Networks for Cognate Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Taraka</namePart>
<namePart type="family">Rama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present phoneme level Siamese convolutional networks for the task of pair-wise cognate identification. We represent a word as a two-dimensional matrix and employ a siamese convolutional network for learning deep representations. We present siamese architectures that jointly learn phoneme level feature representations and language relatedness from raw words for cognate identification. Compared to previous works, we train and test on larger and realistic datasets; and, show that siamese architectures consistently perform better than traditional linear classifier approach.</abstract>
<identifier type="citekey">rama-2016-siamese</identifier>
<location>
<url>https://aclanthology.org/C16-1097</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1018</start>
<end>1027</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Siamese Convolutional Networks for Cognate Identification
%A Rama, Taraka
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F rama-2016-siamese
%X In this paper, we present phoneme level Siamese convolutional networks for the task of pair-wise cognate identification. We represent a word as a two-dimensional matrix and employ a siamese convolutional network for learning deep representations. We present siamese architectures that jointly learn phoneme level feature representations and language relatedness from raw words for cognate identification. Compared to previous works, we train and test on larger and realistic datasets; and, show that siamese architectures consistently perform better than traditional linear classifier approach.
%U https://aclanthology.org/C16-1097
%P 1018-1027
Markdown (Informal)
[Siamese Convolutional Networks for Cognate Identification](https://aclanthology.org/C16-1097) (Rama, COLING 2016)
ACL