@inproceedings{perez-beltrachini-etal-2016-building,
title = "Building {RDF} Content for Data-to-Text Generation",
author = "Perez-Beltrachini, Laura and
Sayed, Rania and
Gardent, Claire",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1141/",
pages = "1493--1502",
abstract = "In Natural Language Generation (NLG), one important limitation is the lack of common benchmarks on which to train, evaluate and compare data-to-text generators. In this paper, we make one step in that direction and introduce a method for automatically creating an arbitrary large repertoire of data units that could serve as input for generation. Using both automated metrics and a human evaluation, we show that the data units produced by our method are both diverse and coherent."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perez-beltrachini-etal-2016-building">
<titleInfo>
<title>Building RDF Content for Data-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rania</namePart>
<namePart type="family">Sayed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Natural Language Generation (NLG), one important limitation is the lack of common benchmarks on which to train, evaluate and compare data-to-text generators. In this paper, we make one step in that direction and introduce a method for automatically creating an arbitrary large repertoire of data units that could serve as input for generation. Using both automated metrics and a human evaluation, we show that the data units produced by our method are both diverse and coherent.</abstract>
<identifier type="citekey">perez-beltrachini-etal-2016-building</identifier>
<location>
<url>https://aclanthology.org/C16-1141/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>1493</start>
<end>1502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Building RDF Content for Data-to-Text Generation
%A Perez-Beltrachini, Laura
%A Sayed, Rania
%A Gardent, Claire
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F perez-beltrachini-etal-2016-building
%X In Natural Language Generation (NLG), one important limitation is the lack of common benchmarks on which to train, evaluate and compare data-to-text generators. In this paper, we make one step in that direction and introduce a method for automatically creating an arbitrary large repertoire of data units that could serve as input for generation. Using both automated metrics and a human evaluation, we show that the data units produced by our method are both diverse and coherent.
%U https://aclanthology.org/C16-1141/
%P 1493-1502
Markdown (Informal)
[Building RDF Content for Data-to-Text Generation](https://aclanthology.org/C16-1141/) (Perez-Beltrachini et al., COLING 2016)
ACL
- Laura Perez-Beltrachini, Rania Sayed, and Claire Gardent. 2016. Building RDF Content for Data-to-Text Generation. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1493–1502, Osaka, Japan. The COLING 2016 Organizing Committee.