@inproceedings{zubiaga-etal-2016-stance,
title = "Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations",
author = "Zubiaga, Arkaitz and
Kochkina, Elena and
Liakata, Maria and
Procter, Rob and
Lukasik, Michal",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1230",
pages = "2438--2448",
abstract = "Rumour stance classification, the task that determines if each tweet in a collection discussing a rumour is supporting, denying, questioning or simply commenting on the rumour, has been attracting substantial interest. Here we introduce a novel approach that makes use of the sequence of transitions observed in tree-structured conversation threads in Twitter. The conversation threads are formed by harvesting users{'} replies to one another, which results in a nested tree-like structure. Previous work addressing the stance classification task has treated each tweet as a separate unit. Here we analyse tweets by virtue of their position in a sequence and test two sequential classifiers, Linear-Chain CRF and Tree CRF, each of which makes different assumptions about the conversational structure. We experiment with eight Twitter datasets, collected during breaking news, and show that exploiting the sequential structure of Twitter conversations achieves significant improvements over the non-sequential methods. Our work is the first to model Twitter conversations as a tree structure in this manner, introducing a novel way of tackling NLP tasks on Twitter conversations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zubiaga-etal-2016-stance">
<titleInfo>
<title>Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arkaitz</namePart>
<namePart type="family">Zubiaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Kochkina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Procter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Lukasik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rumour stance classification, the task that determines if each tweet in a collection discussing a rumour is supporting, denying, questioning or simply commenting on the rumour, has been attracting substantial interest. Here we introduce a novel approach that makes use of the sequence of transitions observed in tree-structured conversation threads in Twitter. The conversation threads are formed by harvesting users’ replies to one another, which results in a nested tree-like structure. Previous work addressing the stance classification task has treated each tweet as a separate unit. Here we analyse tweets by virtue of their position in a sequence and test two sequential classifiers, Linear-Chain CRF and Tree CRF, each of which makes different assumptions about the conversational structure. We experiment with eight Twitter datasets, collected during breaking news, and show that exploiting the sequential structure of Twitter conversations achieves significant improvements over the non-sequential methods. Our work is the first to model Twitter conversations as a tree structure in this manner, introducing a novel way of tackling NLP tasks on Twitter conversations.</abstract>
<identifier type="citekey">zubiaga-etal-2016-stance</identifier>
<location>
<url>https://aclanthology.org/C16-1230</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>2438</start>
<end>2448</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations
%A Zubiaga, Arkaitz
%A Kochkina, Elena
%A Liakata, Maria
%A Procter, Rob
%A Lukasik, Michal
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F zubiaga-etal-2016-stance
%X Rumour stance classification, the task that determines if each tweet in a collection discussing a rumour is supporting, denying, questioning or simply commenting on the rumour, has been attracting substantial interest. Here we introduce a novel approach that makes use of the sequence of transitions observed in tree-structured conversation threads in Twitter. The conversation threads are formed by harvesting users’ replies to one another, which results in a nested tree-like structure. Previous work addressing the stance classification task has treated each tweet as a separate unit. Here we analyse tweets by virtue of their position in a sequence and test two sequential classifiers, Linear-Chain CRF and Tree CRF, each of which makes different assumptions about the conversational structure. We experiment with eight Twitter datasets, collected during breaking news, and show that exploiting the sequential structure of Twitter conversations achieves significant improvements over the non-sequential methods. Our work is the first to model Twitter conversations as a tree structure in this manner, introducing a novel way of tackling NLP tasks on Twitter conversations.
%U https://aclanthology.org/C16-1230
%P 2438-2448
Markdown (Informal)
[Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure of Social Media Conversations](https://aclanthology.org/C16-1230) (Zubiaga et al., COLING 2016)
ACL