@inproceedings{jiang-etal-2016-latent,
title = "Latent Topic Embedding",
author = "Jiang, Di and
Shi, Lei and
Lian, Rongzhong and
Wu, Hua",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1253",
pages = "2689--2698",
abstract = "Topic modeling and word embedding are two important techniques for deriving latent semantics from data. General-purpose topic models typically work in coarse granularity by capturing word co-occurrence at the document/sentence level. In contrast, word embedding models usually work in much finer granularity by modeling word co-occurrence within small sliding windows. With the aim of deriving latent semantics by considering word co-occurrence at different levels of granularity, we propose a novel model named \textit{Latent Topic Embedding} (LTE), which seamlessly integrates topic generation and embedding learning in one unified framework. We further propose an efficient Monte Carlo EM algorithm to estimate the parameters of interest. By retaining the individual advantages of topic modeling and word embedding, LTE results in better latent topics and word embedding. Extensive experiments verify the superiority of LTE over the state-of-the-arts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2016-latent">
<titleInfo>
<title>Latent Topic Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rongzhong</namePart>
<namePart type="family">Lian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic modeling and word embedding are two important techniques for deriving latent semantics from data. General-purpose topic models typically work in coarse granularity by capturing word co-occurrence at the document/sentence level. In contrast, word embedding models usually work in much finer granularity by modeling word co-occurrence within small sliding windows. With the aim of deriving latent semantics by considering word co-occurrence at different levels of granularity, we propose a novel model named Latent Topic Embedding (LTE), which seamlessly integrates topic generation and embedding learning in one unified framework. We further propose an efficient Monte Carlo EM algorithm to estimate the parameters of interest. By retaining the individual advantages of topic modeling and word embedding, LTE results in better latent topics and word embedding. Extensive experiments verify the superiority of LTE over the state-of-the-arts.</abstract>
<identifier type="citekey">jiang-etal-2016-latent</identifier>
<location>
<url>https://aclanthology.org/C16-1253</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>2689</start>
<end>2698</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Latent Topic Embedding
%A Jiang, Di
%A Shi, Lei
%A Lian, Rongzhong
%A Wu, Hua
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F jiang-etal-2016-latent
%X Topic modeling and word embedding are two important techniques for deriving latent semantics from data. General-purpose topic models typically work in coarse granularity by capturing word co-occurrence at the document/sentence level. In contrast, word embedding models usually work in much finer granularity by modeling word co-occurrence within small sliding windows. With the aim of deriving latent semantics by considering word co-occurrence at different levels of granularity, we propose a novel model named Latent Topic Embedding (LTE), which seamlessly integrates topic generation and embedding learning in one unified framework. We further propose an efficient Monte Carlo EM algorithm to estimate the parameters of interest. By retaining the individual advantages of topic modeling and word embedding, LTE results in better latent topics and word embedding. Extensive experiments verify the superiority of LTE over the state-of-the-arts.
%U https://aclanthology.org/C16-1253
%P 2689-2698
Markdown (Informal)
[Latent Topic Embedding](https://aclanthology.org/C16-1253) (Jiang et al., COLING 2016)
ACL
- Di Jiang, Lei Shi, Rongzhong Lian, and Hua Wu. 2016. Latent Topic Embedding. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 2689–2698, Osaka, Japan. The COLING 2016 Organizing Committee.