@inproceedings{tsakalidis-etal-2016-combining,
title = "Combining Heterogeneous User Generated Data to Sense Well-being",
author = "Tsakalidis, Adam and
Liakata, Maria and
Damoulas, Theo and
Jellinek, Brigitte and
Guo, Weisi and
Cristea, Alexandra",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1283",
pages = "3007--3018",
abstract = "In this paper we address a new problem of predicting affect and well-being scales in a real-world setting of heterogeneous, longitudinal and non-synchronous textual as well as non-linguistic data that can be harvested from on-line media and mobile phones. We describe the method for collecting the heterogeneous longitudinal data, how features are extracted to address missing information and differences in temporal alignment, and how the latter are combined to yield promising predictions of affect and well-being on the basis of widely used psychological scales. We achieve a coefficient of determination ($R^2$) of 0.71-0.76 and a correlation coefficient of 0.68-0.87 which is higher than the state-of-the art in equivalent multi-modal tasks for affect.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tsakalidis-etal-2016-combining">
<titleInfo>
<title>Combining Heterogeneous User Generated Data to Sense Well-being</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Tsakalidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Theo</namePart>
<namePart type="family">Damoulas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brigitte</namePart>
<namePart type="family">Jellinek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weisi</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Cristea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we address a new problem of predicting affect and well-being scales in a real-world setting of heterogeneous, longitudinal and non-synchronous textual as well as non-linguistic data that can be harvested from on-line media and mobile phones. We describe the method for collecting the heterogeneous longitudinal data, how features are extracted to address missing information and differences in temporal alignment, and how the latter are combined to yield promising predictions of affect and well-being on the basis of widely used psychological scales. We achieve a coefficient of determination (R²) of 0.71-0.76 and a correlation coefficient of 0.68-0.87 which is higher than the state-of-the art in equivalent multi-modal tasks for affect.</abstract>
<identifier type="citekey">tsakalidis-etal-2016-combining</identifier>
<location>
<url>https://aclanthology.org/C16-1283</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3007</start>
<end>3018</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Heterogeneous User Generated Data to Sense Well-being
%A Tsakalidis, Adam
%A Liakata, Maria
%A Damoulas, Theo
%A Jellinek, Brigitte
%A Guo, Weisi
%A Cristea, Alexandra
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F tsakalidis-etal-2016-combining
%X In this paper we address a new problem of predicting affect and well-being scales in a real-world setting of heterogeneous, longitudinal and non-synchronous textual as well as non-linguistic data that can be harvested from on-line media and mobile phones. We describe the method for collecting the heterogeneous longitudinal data, how features are extracted to address missing information and differences in temporal alignment, and how the latter are combined to yield promising predictions of affect and well-being on the basis of widely used psychological scales. We achieve a coefficient of determination (R²) of 0.71-0.76 and a correlation coefficient of 0.68-0.87 which is higher than the state-of-the art in equivalent multi-modal tasks for affect.
%U https://aclanthology.org/C16-1283
%P 3007-3018
Markdown (Informal)
[Combining Heterogeneous User Generated Data to Sense Well-being](https://aclanthology.org/C16-1283) (Tsakalidis et al., COLING 2016)
ACL
- Adam Tsakalidis, Maria Liakata, Theo Damoulas, Brigitte Jellinek, Weisi Guo, and Alexandra Cristea. 2016. Combining Heterogeneous User Generated Data to Sense Well-being. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3007–3018, Osaka, Japan. The COLING 2016 Organizing Committee.