@inproceedings{mao-etal-2016-novel,
title = "A Novel Fast Framework for Topic Labeling Based on Similarity-preserved Hashing",
author = "Mao, Xian-Ling and
Hao, Yi-Jing and
Zhou, Qiang and
Yuan, Wen-Qing and
Yang, Liner and
Huang, Heyan",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1315/",
pages = "3339--3348",
abstract = "Recently, topic modeling has been widely applied in data mining due to its powerful ability. A common, major challenge in applying such topic models to other tasks is to accurately interpret the meaning of each topic. Topic labeling, as a major interpreting method, has attracted significant attention recently. However, most of previous works only focus on the effectiveness of topic labeling, and less attention has been paid to quickly creating good topic descriptors; meanwhile, it`s hard to assign labels for new emerging topics by using most of existing methods. To solve the problems above, in this paper, we propose a novel fast topic labeling framework that casts the labeling problem as a k-nearest neighbor (KNN) search problem in a probability vector set. Our experimental results show that the proposed sequential interleaving method based on locality sensitive hashing (LSH) technology is efficient in boosting the comparison speed among probability distributions, and the proposed framework can generate meaningful labels to interpret topics, including new emerging topics."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mao-etal-2016-novel">
<titleInfo>
<title>A Novel Fast Framework for Topic Labeling Based on Similarity-preserved Hashing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xian-Ling</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Jing</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Qing</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liner</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heyan</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, topic modeling has been widely applied in data mining due to its powerful ability. A common, major challenge in applying such topic models to other tasks is to accurately interpret the meaning of each topic. Topic labeling, as a major interpreting method, has attracted significant attention recently. However, most of previous works only focus on the effectiveness of topic labeling, and less attention has been paid to quickly creating good topic descriptors; meanwhile, it‘s hard to assign labels for new emerging topics by using most of existing methods. To solve the problems above, in this paper, we propose a novel fast topic labeling framework that casts the labeling problem as a k-nearest neighbor (KNN) search problem in a probability vector set. Our experimental results show that the proposed sequential interleaving method based on locality sensitive hashing (LSH) technology is efficient in boosting the comparison speed among probability distributions, and the proposed framework can generate meaningful labels to interpret topics, including new emerging topics.</abstract>
<identifier type="citekey">mao-etal-2016-novel</identifier>
<location>
<url>https://aclanthology.org/C16-1315/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3339</start>
<end>3348</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Novel Fast Framework for Topic Labeling Based on Similarity-preserved Hashing
%A Mao, Xian-Ling
%A Hao, Yi-Jing
%A Zhou, Qiang
%A Yuan, Wen-Qing
%A Yang, Liner
%A Huang, Heyan
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F mao-etal-2016-novel
%X Recently, topic modeling has been widely applied in data mining due to its powerful ability. A common, major challenge in applying such topic models to other tasks is to accurately interpret the meaning of each topic. Topic labeling, as a major interpreting method, has attracted significant attention recently. However, most of previous works only focus on the effectiveness of topic labeling, and less attention has been paid to quickly creating good topic descriptors; meanwhile, it‘s hard to assign labels for new emerging topics by using most of existing methods. To solve the problems above, in this paper, we propose a novel fast topic labeling framework that casts the labeling problem as a k-nearest neighbor (KNN) search problem in a probability vector set. Our experimental results show that the proposed sequential interleaving method based on locality sensitive hashing (LSH) technology is efficient in boosting the comparison speed among probability distributions, and the proposed framework can generate meaningful labels to interpret topics, including new emerging topics.
%U https://aclanthology.org/C16-1315/
%P 3339-3348
Markdown (Informal)
[A Novel Fast Framework for Topic Labeling Based on Similarity-preserved Hashing](https://aclanthology.org/C16-1315/) (Mao et al., COLING 2016)
ACL