@inproceedings{drozd-etal-2016-word,
title = "Word Embeddings, Analogies, and Machine Learning: Beyond king - man + woman = queen",
author = "Drozd, Aleksandr and
Gladkova, Anna and
Matsuoka, Satoshi",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1332",
pages = "3519--3530",
abstract = "Solving word analogies became one of the most popular benchmarks for word embeddings on the assumption that linear relations between word pairs (such as \textit{king}:\textit{man} :: \textit{woman}:\textit{queen}) are indicative of the quality of the embedding. We question this assumption by showing that the information not detected by linear offset may still be recoverable by a more sophisticated search method, and thus is actually encoded in the embedding. The general problem with linear offset is its sensitivity to the idiosyncrasies of individual words. We show that simple averaging over multiple word pairs improves over the state-of-the-art. A further improvement in accuracy (up to 30{\%} for some embeddings and relations) is achieved by combining cosine similarity with an estimation of the extent to which a candidate answer belongs to the correct word class. In addition to this practical contribution, this work highlights the problem of the interaction between word embeddings and analogy retrieval algorithms, and its implications for the evaluation of word embeddings and the use of analogies in extrinsic tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="drozd-etal-2016-word">
<titleInfo>
<title>Word Embeddings, Analogies, and Machine Learning: Beyond king - man + woman = queen</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Gladkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Matsuoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Solving word analogies became one of the most popular benchmarks for word embeddings on the assumption that linear relations between word pairs (such as king:man :: woman:queen) are indicative of the quality of the embedding. We question this assumption by showing that the information not detected by linear offset may still be recoverable by a more sophisticated search method, and thus is actually encoded in the embedding. The general problem with linear offset is its sensitivity to the idiosyncrasies of individual words. We show that simple averaging over multiple word pairs improves over the state-of-the-art. A further improvement in accuracy (up to 30% for some embeddings and relations) is achieved by combining cosine similarity with an estimation of the extent to which a candidate answer belongs to the correct word class. In addition to this practical contribution, this work highlights the problem of the interaction between word embeddings and analogy retrieval algorithms, and its implications for the evaluation of word embeddings and the use of analogies in extrinsic tasks.</abstract>
<identifier type="citekey">drozd-etal-2016-word</identifier>
<location>
<url>https://aclanthology.org/C16-1332</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>3519</start>
<end>3530</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word Embeddings, Analogies, and Machine Learning: Beyond king - man + woman = queen
%A Drozd, Aleksandr
%A Gladkova, Anna
%A Matsuoka, Satoshi
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F drozd-etal-2016-word
%X Solving word analogies became one of the most popular benchmarks for word embeddings on the assumption that linear relations between word pairs (such as king:man :: woman:queen) are indicative of the quality of the embedding. We question this assumption by showing that the information not detected by linear offset may still be recoverable by a more sophisticated search method, and thus is actually encoded in the embedding. The general problem with linear offset is its sensitivity to the idiosyncrasies of individual words. We show that simple averaging over multiple word pairs improves over the state-of-the-art. A further improvement in accuracy (up to 30% for some embeddings and relations) is achieved by combining cosine similarity with an estimation of the extent to which a candidate answer belongs to the correct word class. In addition to this practical contribution, this work highlights the problem of the interaction between word embeddings and analogy retrieval algorithms, and its implications for the evaluation of word embeddings and the use of analogies in extrinsic tasks.
%U https://aclanthology.org/C16-1332
%P 3519-3530
Markdown (Informal)
[Word Embeddings, Analogies, and Machine Learning: Beyond king - man + woman = queen](https://aclanthology.org/C16-1332) (Drozd et al., COLING 2016)
ACL