@inproceedings{huang-etal-2018-neural,
title = "Neural Math Word Problem Solver with Reinforcement Learning",
author = "Huang, Danqing and
Liu, Jing and
Lin, Chin-Yew and
Yin, Jian",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1018/",
pages = "213--223",
abstract = "Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the {\textquotedblleft}train-test discrepancy{\textquotedblright} issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2018-neural">
<titleInfo>
<title>Neural Math Word Problem Solver with Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danqing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chin-Yew</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the “train-test discrepancy” issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results.</abstract>
<identifier type="citekey">huang-etal-2018-neural</identifier>
<location>
<url>https://aclanthology.org/C18-1018/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>213</start>
<end>223</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Math Word Problem Solver with Reinforcement Learning
%A Huang, Danqing
%A Liu, Jing
%A Lin, Chin-Yew
%A Yin, Jian
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F huang-etal-2018-neural
%X Sequence-to-sequence model has been applied to solve math word problems. The model takes math problem descriptions as input and generates equations as output. The advantage of sequence-to-sequence model requires no feature engineering and can generate equations that do not exist in training data. However, our experimental analysis reveals that this model suffers from two shortcomings: (1) generate spurious numbers; (2) generate numbers at wrong positions. In this paper, we propose incorporating copy and alignment mechanism to the sequence-to-sequence model (namely CASS) to address these shortcomings. To train our model, we apply reinforcement learning to directly optimize the solution accuracy. It overcomes the “train-test discrepancy” issue of maximum likelihood estimation, which uses the surrogate objective of maximizing equation likelihood during training while the evaluation metric is solution accuracy (non-differentiable) at test time. Furthermore, to explore the effectiveness of our neural model, we use our model output as a feature and incorporate it into the feature-based model. Experimental results show that (1) The copy and alignment mechanism is effective to address the two issues; (2) Reinforcement learning leads to better performance than maximum likelihood on this task; (3) Our neural model is complementary to the feature-based model and their combination significantly outperforms the state-of-the-art results.
%U https://aclanthology.org/C18-1018/
%P 213-223
Markdown (Informal)
[Neural Math Word Problem Solver with Reinforcement Learning](https://aclanthology.org/C18-1018/) (Huang et al., COLING 2018)
ACL