@inproceedings{chen-etal-2018-semi,
title = "Semi-Supervised Lexicon Learning for Wide-Coverage Semantic Parsing",
author = "Chen, Bo and
An, Bo and
Sun, Le and
Han, Xianpei",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1076/",
pages = "892--904",
abstract = "Semantic parsers critically rely on accurate and high-coverage lexicons. However, traditional semantic parsers usually utilize annotated logical forms to learn the lexicon, which often suffer from the lexicon coverage problem. In this paper, we propose a graph-based semi-supervised learning framework that makes use of large text corpora and lexical resources. This framework first constructs a graph with a phrase similarity model learned by utilizing many text corpora and lexical resources. Next, graph propagation algorithm identifies the label distribution of unlabeled phrases from labeled ones. We evaluate our approach on two benchmarks: Webquestions and Free917. The results show that, in both datasets, our method achieves substantial improvement when comparing to the base system that does not utilize the learned lexicon, and gains competitive results when comparing to state-of-the-art systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2018-semi">
<titleInfo>
<title>Semi-Supervised Lexicon Learning for Wide-Coverage Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic parsers critically rely on accurate and high-coverage lexicons. However, traditional semantic parsers usually utilize annotated logical forms to learn the lexicon, which often suffer from the lexicon coverage problem. In this paper, we propose a graph-based semi-supervised learning framework that makes use of large text corpora and lexical resources. This framework first constructs a graph with a phrase similarity model learned by utilizing many text corpora and lexical resources. Next, graph propagation algorithm identifies the label distribution of unlabeled phrases from labeled ones. We evaluate our approach on two benchmarks: Webquestions and Free917. The results show that, in both datasets, our method achieves substantial improvement when comparing to the base system that does not utilize the learned lexicon, and gains competitive results when comparing to state-of-the-art systems.</abstract>
<identifier type="citekey">chen-etal-2018-semi</identifier>
<location>
<url>https://aclanthology.org/C18-1076/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>892</start>
<end>904</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-Supervised Lexicon Learning for Wide-Coverage Semantic Parsing
%A Chen, Bo
%A An, Bo
%A Sun, Le
%A Han, Xianpei
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F chen-etal-2018-semi
%X Semantic parsers critically rely on accurate and high-coverage lexicons. However, traditional semantic parsers usually utilize annotated logical forms to learn the lexicon, which often suffer from the lexicon coverage problem. In this paper, we propose a graph-based semi-supervised learning framework that makes use of large text corpora and lexical resources. This framework first constructs a graph with a phrase similarity model learned by utilizing many text corpora and lexical resources. Next, graph propagation algorithm identifies the label distribution of unlabeled phrases from labeled ones. We evaluate our approach on two benchmarks: Webquestions and Free917. The results show that, in both datasets, our method achieves substantial improvement when comparing to the base system that does not utilize the learned lexicon, and gains competitive results when comparing to state-of-the-art systems.
%U https://aclanthology.org/C18-1076/
%P 892-904
Markdown (Informal)
[Semi-Supervised Lexicon Learning for Wide-Coverage Semantic Parsing](https://aclanthology.org/C18-1076/) (Chen et al., COLING 2018)
ACL