@inproceedings{hsu-etal-2018-multilevel,
title = "Multilevel Heuristics for Rationale-Based Entity Relation Classification in Sentences",
author = "Hsu, Shiou Tian and
Chaudhary, Mandar and
Samatova, Nagiza",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1098",
pages = "1145--1155",
abstract = "Rationale-based models provide a unique way to provide justifiable results for relation classification models by identifying rationales (key words and phrases that a person can use to justify the relation in the sentence) during the process. However, existing generative networks used to extract rationales come with a trade-off between extracting diversified rationales and achieving good classification results. In this paper, we propose a multilevel heuristic approach to regulate rationale extraction to avoid extracting monotonous rationales without compromising classification performance. In our model, rationale selection is regularized by a semi-supervised process and features from different levels: word, syntax, sentence, and corpus. We evaluate our approach on the SemEval 2010 dataset that includes 19 relation classes and the quality of extracted rationales with our manually-labeled rationales. Experiments show a significant improvement in classification performance and a 20{\%} gain in rationale interpretability compared to state-of-the-art approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hsu-etal-2018-multilevel">
<titleInfo>
<title>Multilevel Heuristics for Rationale-Based Entity Relation Classification in Sentences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiou</namePart>
<namePart type="given">Tian</namePart>
<namePart type="family">Hsu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mandar</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nagiza</namePart>
<namePart type="family">Samatova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rationale-based models provide a unique way to provide justifiable results for relation classification models by identifying rationales (key words and phrases that a person can use to justify the relation in the sentence) during the process. However, existing generative networks used to extract rationales come with a trade-off between extracting diversified rationales and achieving good classification results. In this paper, we propose a multilevel heuristic approach to regulate rationale extraction to avoid extracting monotonous rationales without compromising classification performance. In our model, rationale selection is regularized by a semi-supervised process and features from different levels: word, syntax, sentence, and corpus. We evaluate our approach on the SemEval 2010 dataset that includes 19 relation classes and the quality of extracted rationales with our manually-labeled rationales. Experiments show a significant improvement in classification performance and a 20% gain in rationale interpretability compared to state-of-the-art approaches.</abstract>
<identifier type="citekey">hsu-etal-2018-multilevel</identifier>
<location>
<url>https://aclanthology.org/C18-1098</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1145</start>
<end>1155</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilevel Heuristics for Rationale-Based Entity Relation Classification in Sentences
%A Hsu, Shiou Tian
%A Chaudhary, Mandar
%A Samatova, Nagiza
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F hsu-etal-2018-multilevel
%X Rationale-based models provide a unique way to provide justifiable results for relation classification models by identifying rationales (key words and phrases that a person can use to justify the relation in the sentence) during the process. However, existing generative networks used to extract rationales come with a trade-off between extracting diversified rationales and achieving good classification results. In this paper, we propose a multilevel heuristic approach to regulate rationale extraction to avoid extracting monotonous rationales without compromising classification performance. In our model, rationale selection is regularized by a semi-supervised process and features from different levels: word, syntax, sentence, and corpus. We evaluate our approach on the SemEval 2010 dataset that includes 19 relation classes and the quality of extracted rationales with our manually-labeled rationales. Experiments show a significant improvement in classification performance and a 20% gain in rationale interpretability compared to state-of-the-art approaches.
%U https://aclanthology.org/C18-1098
%P 1145-1155
Markdown (Informal)
[Multilevel Heuristics for Rationale-Based Entity Relation Classification in Sentences](https://aclanthology.org/C18-1098) (Hsu et al., COLING 2018)
ACL