@inproceedings{preotiuc-pietro-ungar-2018-user,
title = "User-Level Race and Ethnicity Predictors from {T}witter Text",
author = "Preo{\c{t}}iuc-Pietro, Daniel and
Ungar, Lyle",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1130/",
pages = "1534--1545",
abstract = "User demographic inference from social media text has the potential to improve a range of downstream applications, including real-time passive polling or quantifying demographic bias. This study focuses on developing models for user-level race and ethnicity prediction. We introduce a data set of users who self-report their race/ethnicity through a survey, in contrast to previous approaches that use distantly supervised data or perceived labels. We develop predictive models from text which accurately predict the membership of a user to the four largest racial and ethnic groups with up to .884 AUC and make these available to the research community."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="preotiuc-pietro-ungar-2018-user">
<titleInfo>
<title>User-Level Race and Ethnicity Predictors from Twitter Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preoţiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lyle</namePart>
<namePart type="family">Ungar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>User demographic inference from social media text has the potential to improve a range of downstream applications, including real-time passive polling or quantifying demographic bias. This study focuses on developing models for user-level race and ethnicity prediction. We introduce a data set of users who self-report their race/ethnicity through a survey, in contrast to previous approaches that use distantly supervised data or perceived labels. We develop predictive models from text which accurately predict the membership of a user to the four largest racial and ethnic groups with up to .884 AUC and make these available to the research community.</abstract>
<identifier type="citekey">preotiuc-pietro-ungar-2018-user</identifier>
<location>
<url>https://aclanthology.org/C18-1130/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1534</start>
<end>1545</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T User-Level Race and Ethnicity Predictors from Twitter Text
%A Preoţiuc-Pietro, Daniel
%A Ungar, Lyle
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F preotiuc-pietro-ungar-2018-user
%X User demographic inference from social media text has the potential to improve a range of downstream applications, including real-time passive polling or quantifying demographic bias. This study focuses on developing models for user-level race and ethnicity prediction. We introduce a data set of users who self-report their race/ethnicity through a survey, in contrast to previous approaches that use distantly supervised data or perceived labels. We develop predictive models from text which accurately predict the membership of a user to the four largest racial and ethnic groups with up to .884 AUC and make these available to the research community.
%U https://aclanthology.org/C18-1130/
%P 1534-1545
Markdown (Informal)
[User-Level Race and Ethnicity Predictors from Twitter Text](https://aclanthology.org/C18-1130/) (Preoţiuc-Pietro & Ungar, COLING 2018)
ACL