@inproceedings{bouraoui-etal-2018-relation,
title = "Relation Induction in Word Embeddings Revisited",
author = "Bouraoui, Zied and
Jameel, Shoaib and
Schockaert, Steven",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1138/",
pages = "1627--1637",
abstract = "Given a set of instances of some relation, the relation induction task is to predict which other word pairs are likely to be related in the same way. While it is natural to use word embeddings for this task, standard approaches based on vector translations turn out to perform poorly. To address this issue, we propose two probabilistic relation induction models. The first model is based on translations, but uses Gaussians to explicitly model the variability of these translations and to encode soft constraints on the source and target words that may be chosen. In the second model, we use Bayesian linear regression to encode the assumption that there is a linear relationship between the vector representations of related words, which is considerably weaker than the assumption underlying translation based models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bouraoui-etal-2018-relation">
<titleInfo>
<title>Relation Induction in Word Embeddings Revisited</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zied</namePart>
<namePart type="family">Bouraoui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoaib</namePart>
<namePart type="family">Jameel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Given a set of instances of some relation, the relation induction task is to predict which other word pairs are likely to be related in the same way. While it is natural to use word embeddings for this task, standard approaches based on vector translations turn out to perform poorly. To address this issue, we propose two probabilistic relation induction models. The first model is based on translations, but uses Gaussians to explicitly model the variability of these translations and to encode soft constraints on the source and target words that may be chosen. In the second model, we use Bayesian linear regression to encode the assumption that there is a linear relationship between the vector representations of related words, which is considerably weaker than the assumption underlying translation based models.</abstract>
<identifier type="citekey">bouraoui-etal-2018-relation</identifier>
<location>
<url>https://aclanthology.org/C18-1138/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1627</start>
<end>1637</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relation Induction in Word Embeddings Revisited
%A Bouraoui, Zied
%A Jameel, Shoaib
%A Schockaert, Steven
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F bouraoui-etal-2018-relation
%X Given a set of instances of some relation, the relation induction task is to predict which other word pairs are likely to be related in the same way. While it is natural to use word embeddings for this task, standard approaches based on vector translations turn out to perform poorly. To address this issue, we propose two probabilistic relation induction models. The first model is based on translations, but uses Gaussians to explicitly model the variability of these translations and to encode soft constraints on the source and target words that may be chosen. In the second model, we use Bayesian linear regression to encode the assumption that there is a linear relationship between the vector representations of related words, which is considerably weaker than the assumption underlying translation based models.
%U https://aclanthology.org/C18-1138/
%P 1627-1637
Markdown (Informal)
[Relation Induction in Word Embeddings Revisited](https://aclanthology.org/C18-1138/) (Bouraoui et al., COLING 2018)
ACL
- Zied Bouraoui, Shoaib Jameel, and Steven Schockaert. 2018. Relation Induction in Word Embeddings Revisited. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1627–1637, Santa Fe, New Mexico, USA. Association for Computational Linguistics.