@inproceedings{wang-etal-2018-new,
title = "A New Concept of Deep Reinforcement Learning based Augmented General Tagging System",
author = "Wang, Yu and
Patel, Abhishek and
Jin, Hongxia",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1143",
pages = "1683--1693",
abstract = "In this paper, a new deep reinforcement learning based augmented general tagging system is proposed. The new system contains two parts: a deep neural network (DNN) based sequence labeling model and a deep reinforcement learning (DRL) based augmented tagger. The augmented tagger helps improve system performance by modeling the data with minority tags. The new system is evaluated on SLU and NLU sequence labeling tasks using ATIS and CoNLL-2003 benchmark datasets, to demonstrate the new system{'}s outstanding performance on general tagging tasks. Evaluated by F1 scores, it shows that the new system outperforms the current state-of-the-art model on ATIS dataset by 1.9{\%} and that on CoNLL-2003 dataset by 1.4{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2018-new">
<titleInfo>
<title>A New Concept of Deep Reinforcement Learning based Augmented General Tagging System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Patel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongxia</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, a new deep reinforcement learning based augmented general tagging system is proposed. The new system contains two parts: a deep neural network (DNN) based sequence labeling model and a deep reinforcement learning (DRL) based augmented tagger. The augmented tagger helps improve system performance by modeling the data with minority tags. The new system is evaluated on SLU and NLU sequence labeling tasks using ATIS and CoNLL-2003 benchmark datasets, to demonstrate the new system’s outstanding performance on general tagging tasks. Evaluated by F1 scores, it shows that the new system outperforms the current state-of-the-art model on ATIS dataset by 1.9% and that on CoNLL-2003 dataset by 1.4%.</abstract>
<identifier type="citekey">wang-etal-2018-new</identifier>
<location>
<url>https://aclanthology.org/C18-1143</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1683</start>
<end>1693</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A New Concept of Deep Reinforcement Learning based Augmented General Tagging System
%A Wang, Yu
%A Patel, Abhishek
%A Jin, Hongxia
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F wang-etal-2018-new
%X In this paper, a new deep reinforcement learning based augmented general tagging system is proposed. The new system contains two parts: a deep neural network (DNN) based sequence labeling model and a deep reinforcement learning (DRL) based augmented tagger. The augmented tagger helps improve system performance by modeling the data with minority tags. The new system is evaluated on SLU and NLU sequence labeling tasks using ATIS and CoNLL-2003 benchmark datasets, to demonstrate the new system’s outstanding performance on general tagging tasks. Evaluated by F1 scores, it shows that the new system outperforms the current state-of-the-art model on ATIS dataset by 1.9% and that on CoNLL-2003 dataset by 1.4%.
%U https://aclanthology.org/C18-1143
%P 1683-1693
Markdown (Informal)
[A New Concept of Deep Reinforcement Learning based Augmented General Tagging System](https://aclanthology.org/C18-1143) (Wang et al., COLING 2018)
ACL