@inproceedings{brazinskas-etal-2018-embedding,
title = "Embedding Words as Distributions with a {B}ayesian Skip-gram Model",
author = "Bra{\v{z}}inskas, Arthur and
Havrylov, Serhii and
Titov, Ivan",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1151/",
pages = "1775--1789",
abstract = "We introduce a method for embedding words as probability densities in a low-dimensional space. Rather than assuming that a word embedding is fixed across the entire text collection, as in standard word embedding methods, in our Bayesian model we generate it from a word-specific prior density for each occurrence of a given word. Intuitively, for each word, the prior density encodes the distribution of its potential {\textquoteleft}meanings'. These prior densities are conceptually similar to Gaussian embeddings of {\.{e}}wcitevilnis2014word. Interestingly, unlike the Gaussian embeddings, we can also obtain context-specific densities: they encode uncertainty about the sense of a word given its context and correspond to the approximate posterior distributions within our model. The context-dependent densities have many potential applications: for example, we show that they can be directly used in the lexical substitution task. We describe an effective estimation method based on the variational autoencoding framework. We demonstrate the effectiveness of our embedding technique on a range of standard benchmarks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brazinskas-etal-2018-embedding">
<titleInfo>
<title>Embedding Words as Distributions with a Bayesian Skip-gram Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arthur</namePart>
<namePart type="family">Bražinskas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serhii</namePart>
<namePart type="family">Havrylov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a method for embedding words as probability densities in a low-dimensional space. Rather than assuming that a word embedding is fixed across the entire text collection, as in standard word embedding methods, in our Bayesian model we generate it from a word-specific prior density for each occurrence of a given word. Intuitively, for each word, the prior density encodes the distribution of its potential ‘meanings’. These prior densities are conceptually similar to Gaussian embeddings of ėwcitevilnis2014word. Interestingly, unlike the Gaussian embeddings, we can also obtain context-specific densities: they encode uncertainty about the sense of a word given its context and correspond to the approximate posterior distributions within our model. The context-dependent densities have many potential applications: for example, we show that they can be directly used in the lexical substitution task. We describe an effective estimation method based on the variational autoencoding framework. We demonstrate the effectiveness of our embedding technique on a range of standard benchmarks.</abstract>
<identifier type="citekey">brazinskas-etal-2018-embedding</identifier>
<location>
<url>https://aclanthology.org/C18-1151/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1775</start>
<end>1789</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Embedding Words as Distributions with a Bayesian Skip-gram Model
%A Bražinskas, Arthur
%A Havrylov, Serhii
%A Titov, Ivan
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F brazinskas-etal-2018-embedding
%X We introduce a method for embedding words as probability densities in a low-dimensional space. Rather than assuming that a word embedding is fixed across the entire text collection, as in standard word embedding methods, in our Bayesian model we generate it from a word-specific prior density for each occurrence of a given word. Intuitively, for each word, the prior density encodes the distribution of its potential ‘meanings’. These prior densities are conceptually similar to Gaussian embeddings of ėwcitevilnis2014word. Interestingly, unlike the Gaussian embeddings, we can also obtain context-specific densities: they encode uncertainty about the sense of a word given its context and correspond to the approximate posterior distributions within our model. The context-dependent densities have many potential applications: for example, we show that they can be directly used in the lexical substitution task. We describe an effective estimation method based on the variational autoencoding framework. We demonstrate the effectiveness of our embedding technique on a range of standard benchmarks.
%U https://aclanthology.org/C18-1151/
%P 1775-1789
Markdown (Informal)
[Embedding Words as Distributions with a Bayesian Skip-gram Model](https://aclanthology.org/C18-1151/) (Bražinskas et al., COLING 2018)
ACL