@inproceedings{rodriguez-etal-2018-transfer,
title = "Transfer Learning for Entity Recognition of Novel Classes",
author = "Rodriguez, Juan Diego and
Caldwell, Adam and
Liu, Alexander",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1168",
pages = "1974--1985",
abstract = "In this reproduction paper, we replicate and extend several past studies on transfer learning for entity recognition. In particular, we are interested in entity recognition problems where the class labels in the source and target domains are different. Our work is the first direct comparison of these previously published approaches in this problem setting. In addition, we perform experiments on seven new source/target corpus pairs, nearly doubling the total number of corpus pairs that have been studied in all past work combined. Our results empirically demonstrate when each of the published approaches tends to do well. In particular, simpler approaches often work best when there is very little labeled target data, while neural transfer approaches tend to do better when there is more labeled target data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rodriguez-etal-2018-transfer">
<titleInfo>
<title>Transfer Learning for Entity Recognition of Novel Classes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Diego</namePart>
<namePart type="family">Rodriguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Caldwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this reproduction paper, we replicate and extend several past studies on transfer learning for entity recognition. In particular, we are interested in entity recognition problems where the class labels in the source and target domains are different. Our work is the first direct comparison of these previously published approaches in this problem setting. In addition, we perform experiments on seven new source/target corpus pairs, nearly doubling the total number of corpus pairs that have been studied in all past work combined. Our results empirically demonstrate when each of the published approaches tends to do well. In particular, simpler approaches often work best when there is very little labeled target data, while neural transfer approaches tend to do better when there is more labeled target data.</abstract>
<identifier type="citekey">rodriguez-etal-2018-transfer</identifier>
<location>
<url>https://aclanthology.org/C18-1168</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1974</start>
<end>1985</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transfer Learning for Entity Recognition of Novel Classes
%A Rodriguez, Juan Diego
%A Caldwell, Adam
%A Liu, Alexander
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F rodriguez-etal-2018-transfer
%X In this reproduction paper, we replicate and extend several past studies on transfer learning for entity recognition. In particular, we are interested in entity recognition problems where the class labels in the source and target domains are different. Our work is the first direct comparison of these previously published approaches in this problem setting. In addition, we perform experiments on seven new source/target corpus pairs, nearly doubling the total number of corpus pairs that have been studied in all past work combined. Our results empirically demonstrate when each of the published approaches tends to do well. In particular, simpler approaches often work best when there is very little labeled target data, while neural transfer approaches tend to do better when there is more labeled target data.
%U https://aclanthology.org/C18-1168
%P 1974-1985
Markdown (Informal)
[Transfer Learning for Entity Recognition of Novel Classes](https://aclanthology.org/C18-1168) (Rodriguez et al., COLING 2018)
ACL
- Juan Diego Rodriguez, Adam Caldwell, and Alexander Liu. 2018. Transfer Learning for Entity Recognition of Novel Classes. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1974–1985, Santa Fe, New Mexico, USA. Association for Computational Linguistics.