@inproceedings{amram-etal-2018-representations,
title = "Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from {M}odern {H}ebrew",
author = "Amram, Adam and
Ben David, Anat and
Tsarfaty, Reut",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1190/",
pages = "2242--2252",
abstract = "This paper empirically studies the effects of representation choices on neural sentiment analysis for Modern Hebrew, a morphologically rich language (MRL) for which no sentiment analyzer currently exists. We study two dimensions of representational choices: (i) the granularity of the input signal (token-based vs. morpheme-based), and (ii) the level of encoding of vocabulary items (string-based vs. character-based). We hypothesise that for MRLs, languages where multiple meaning-bearing elements may be carried by a single space-delimited token, these choices will have measurable effects on task perfromance, and that these effects may vary for different architectural designs {---} fully-connected, convolutional or recurrent. Specifically, we hypothesize that morpheme-based representations will have advantages in terms of their generalization capacity and task accuracy, due to their better OOV coverage. To empirically study these effects, we develop a new sentiment analysis benchmark for Hebrew, based on 12K social media comments, and provide two instances of these data: in token-based and morpheme-based settings. Our experiments show that representation choices empirical effects vary with architecture type. While fully-connected and convolutional networks slightly prefer token-based settings, RNNs benefit from a morpheme-based representation, in accord with the hypothesis that explicit morphological information may help generalize. Our endeavour also delivers the first state-of-the-art broad-coverage sentiment analyzer for Hebrew, with over 89{\%} accuracy, alongside an established benchmark to further study the effects of linguistic representation choices on neural networks' task performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amram-etal-2018-representations">
<titleInfo>
<title>Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from Modern Hebrew</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Amram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anat</namePart>
<namePart type="family">Ben David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper empirically studies the effects of representation choices on neural sentiment analysis for Modern Hebrew, a morphologically rich language (MRL) for which no sentiment analyzer currently exists. We study two dimensions of representational choices: (i) the granularity of the input signal (token-based vs. morpheme-based), and (ii) the level of encoding of vocabulary items (string-based vs. character-based). We hypothesise that for MRLs, languages where multiple meaning-bearing elements may be carried by a single space-delimited token, these choices will have measurable effects on task perfromance, and that these effects may vary for different architectural designs — fully-connected, convolutional or recurrent. Specifically, we hypothesize that morpheme-based representations will have advantages in terms of their generalization capacity and task accuracy, due to their better OOV coverage. To empirically study these effects, we develop a new sentiment analysis benchmark for Hebrew, based on 12K social media comments, and provide two instances of these data: in token-based and morpheme-based settings. Our experiments show that representation choices empirical effects vary with architecture type. While fully-connected and convolutional networks slightly prefer token-based settings, RNNs benefit from a morpheme-based representation, in accord with the hypothesis that explicit morphological information may help generalize. Our endeavour also delivers the first state-of-the-art broad-coverage sentiment analyzer for Hebrew, with over 89% accuracy, alongside an established benchmark to further study the effects of linguistic representation choices on neural networks’ task performance.</abstract>
<identifier type="citekey">amram-etal-2018-representations</identifier>
<location>
<url>https://aclanthology.org/C18-1190/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2242</start>
<end>2252</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from Modern Hebrew
%A Amram, Adam
%A Ben David, Anat
%A Tsarfaty, Reut
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F amram-etal-2018-representations
%X This paper empirically studies the effects of representation choices on neural sentiment analysis for Modern Hebrew, a morphologically rich language (MRL) for which no sentiment analyzer currently exists. We study two dimensions of representational choices: (i) the granularity of the input signal (token-based vs. morpheme-based), and (ii) the level of encoding of vocabulary items (string-based vs. character-based). We hypothesise that for MRLs, languages where multiple meaning-bearing elements may be carried by a single space-delimited token, these choices will have measurable effects on task perfromance, and that these effects may vary for different architectural designs — fully-connected, convolutional or recurrent. Specifically, we hypothesize that morpheme-based representations will have advantages in terms of their generalization capacity and task accuracy, due to their better OOV coverage. To empirically study these effects, we develop a new sentiment analysis benchmark for Hebrew, based on 12K social media comments, and provide two instances of these data: in token-based and morpheme-based settings. Our experiments show that representation choices empirical effects vary with architecture type. While fully-connected and convolutional networks slightly prefer token-based settings, RNNs benefit from a morpheme-based representation, in accord with the hypothesis that explicit morphological information may help generalize. Our endeavour also delivers the first state-of-the-art broad-coverage sentiment analyzer for Hebrew, with over 89% accuracy, alongside an established benchmark to further study the effects of linguistic representation choices on neural networks’ task performance.
%U https://aclanthology.org/C18-1190/
%P 2242-2252
Markdown (Informal)
[Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from Modern Hebrew](https://aclanthology.org/C18-1190/) (Amram et al., COLING 2018)
ACL