@inproceedings{fan-etal-2018-exploratory,
title = "Exploratory Neural Relation Classification for Domain Knowledge Acquisition",
author = "Fan, Yan and
Wang, Chengyu and
He, Xiaofeng",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1192/",
pages = "2265--2276",
abstract = "The state-of-the-art methods for relation classification are primarily based on deep neural net- works. This kind of supervised learning method suffers from not only limited training data, but also the large number of low-frequency relations in specific domains. In this paper, we propose the task of exploratory relation classification for domain knowledge harvesting. The goal is to learn a classifier on pre-defined relations and discover new relations expressed in texts. A dynamically structured neural network is introduced to classify entity pairs to a continuously expanded relation set. We further propose the similarity sensitive Chinese restaurant process to discover new relations. Experiments conducted on a large corpus show the effectiveness of our neural network, while new relations are discovered with high precision and recall."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-etal-2018-exploratory">
<titleInfo>
<title>Exploratory Neural Relation Classification for Domain Knowledge Acquisition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofeng</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The state-of-the-art methods for relation classification are primarily based on deep neural net- works. This kind of supervised learning method suffers from not only limited training data, but also the large number of low-frequency relations in specific domains. In this paper, we propose the task of exploratory relation classification for domain knowledge harvesting. The goal is to learn a classifier on pre-defined relations and discover new relations expressed in texts. A dynamically structured neural network is introduced to classify entity pairs to a continuously expanded relation set. We further propose the similarity sensitive Chinese restaurant process to discover new relations. Experiments conducted on a large corpus show the effectiveness of our neural network, while new relations are discovered with high precision and recall.</abstract>
<identifier type="citekey">fan-etal-2018-exploratory</identifier>
<location>
<url>https://aclanthology.org/C18-1192/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2265</start>
<end>2276</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploratory Neural Relation Classification for Domain Knowledge Acquisition
%A Fan, Yan
%A Wang, Chengyu
%A He, Xiaofeng
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F fan-etal-2018-exploratory
%X The state-of-the-art methods for relation classification are primarily based on deep neural net- works. This kind of supervised learning method suffers from not only limited training data, but also the large number of low-frequency relations in specific domains. In this paper, we propose the task of exploratory relation classification for domain knowledge harvesting. The goal is to learn a classifier on pre-defined relations and discover new relations expressed in texts. A dynamically structured neural network is introduced to classify entity pairs to a continuously expanded relation set. We further propose the similarity sensitive Chinese restaurant process to discover new relations. Experiments conducted on a large corpus show the effectiveness of our neural network, while new relations are discovered with high precision and recall.
%U https://aclanthology.org/C18-1192/
%P 2265-2276
Markdown (Informal)
[Exploratory Neural Relation Classification for Domain Knowledge Acquisition](https://aclanthology.org/C18-1192/) (Fan et al., COLING 2018)
ACL