@inproceedings{wang-goutte-2018-real,
title = "Real-time Change Point Detection using On-line Topic Models",
author = "Wang, Yunli and
Goutte, Cyril",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1212/",
pages = "2505--2515",
abstract = "Detecting changes within an unfolding event in real time from news articles or social media enables to react promptly to serious issues in public safety, public health or natural disasters. In this study, we use on-line Latent Dirichlet Allocation (LDA) to model shifts in topics, and apply on-line change point detection (CPD) algorithms to detect when significant changes happen. We describe an on-line Bayesian change point detection algorithm that we use to detect topic changes from on-line LDA output. Extensive experiments on social media data and news articles show the benefits of on-line LDA versus standard LDA, and of on-line change point detection compared to off-line algorithms. This yields F-scores up to 52{\%} on the detection of significant real-life changes from these document streams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-goutte-2018-real">
<titleInfo>
<title>Real-time Change Point Detection using On-line Topic Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunli</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyril</namePart>
<namePart type="family">Goutte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting changes within an unfolding event in real time from news articles or social media enables to react promptly to serious issues in public safety, public health or natural disasters. In this study, we use on-line Latent Dirichlet Allocation (LDA) to model shifts in topics, and apply on-line change point detection (CPD) algorithms to detect when significant changes happen. We describe an on-line Bayesian change point detection algorithm that we use to detect topic changes from on-line LDA output. Extensive experiments on social media data and news articles show the benefits of on-line LDA versus standard LDA, and of on-line change point detection compared to off-line algorithms. This yields F-scores up to 52% on the detection of significant real-life changes from these document streams.</abstract>
<identifier type="citekey">wang-goutte-2018-real</identifier>
<location>
<url>https://aclanthology.org/C18-1212/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2505</start>
<end>2515</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Real-time Change Point Detection using On-line Topic Models
%A Wang, Yunli
%A Goutte, Cyril
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F wang-goutte-2018-real
%X Detecting changes within an unfolding event in real time from news articles or social media enables to react promptly to serious issues in public safety, public health or natural disasters. In this study, we use on-line Latent Dirichlet Allocation (LDA) to model shifts in topics, and apply on-line change point detection (CPD) algorithms to detect when significant changes happen. We describe an on-line Bayesian change point detection algorithm that we use to detect topic changes from on-line LDA output. Extensive experiments on social media data and news articles show the benefits of on-line LDA versus standard LDA, and of on-line change point detection compared to off-line algorithms. This yields F-scores up to 52% on the detection of significant real-life changes from these document streams.
%U https://aclanthology.org/C18-1212/
%P 2505-2515
Markdown (Informal)
[Real-time Change Point Detection using On-line Topic Models](https://aclanthology.org/C18-1212/) (Wang & Goutte, COLING 2018)
ACL