@inproceedings{kim-etal-2018-modeling,
title = "Modeling with Recurrent Neural Networks for Open Vocabulary Slots",
author = "Kim, Jun-Seong and
Kim, Junghoe and
Park, SeungUn and
Lee, Kwangyong and
Lee, Yoonju",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1235/",
pages = "2778--2790",
abstract = "Dealing with {\textquoteleft}open-vocabulary' slots has been among the challenges in the natural language area. While recent studies on attention-based recurrent neural network (RNN) models have performed well in completing several language related tasks such as spoken language understanding and dialogue systems, there has been a lack of attempts to address filling slots that take on values from a virtually unlimited set. In this paper, we propose a new RNN model that can capture the vital concept: Understanding the role of a word may vary according to how long a reader focuses on a particular part of a sentence. The proposed model utilizes a long-term aware attention structure, positional encoding primarily considering the relative distance between words, and multi-task learning of a character-based language model and an intent detection model. We show that the model outperforms the existing RNN models with respect to discovering {\textquoteleft}open-vocabulary' slots without any external information, such as a named entity database or knowledge base. In particular, we confirm that it performs better with a greater number of slots in a dataset, including unknown words, by evaluating the models on a dataset of several domains. In addition, the proposed model also demonstrates superior performance with regard to intent detection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2018-modeling">
<titleInfo>
<title>Modeling with Recurrent Neural Networks for Open Vocabulary Slots</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun-Seong</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junghoe</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SeungUn</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kwangyong</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoonju</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dealing with ‘open-vocabulary’ slots has been among the challenges in the natural language area. While recent studies on attention-based recurrent neural network (RNN) models have performed well in completing several language related tasks such as spoken language understanding and dialogue systems, there has been a lack of attempts to address filling slots that take on values from a virtually unlimited set. In this paper, we propose a new RNN model that can capture the vital concept: Understanding the role of a word may vary according to how long a reader focuses on a particular part of a sentence. The proposed model utilizes a long-term aware attention structure, positional encoding primarily considering the relative distance between words, and multi-task learning of a character-based language model and an intent detection model. We show that the model outperforms the existing RNN models with respect to discovering ‘open-vocabulary’ slots without any external information, such as a named entity database or knowledge base. In particular, we confirm that it performs better with a greater number of slots in a dataset, including unknown words, by evaluating the models on a dataset of several domains. In addition, the proposed model also demonstrates superior performance with regard to intent detection.</abstract>
<identifier type="citekey">kim-etal-2018-modeling</identifier>
<location>
<url>https://aclanthology.org/C18-1235/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2778</start>
<end>2790</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling with Recurrent Neural Networks for Open Vocabulary Slots
%A Kim, Jun-Seong
%A Kim, Junghoe
%A Park, SeungUn
%A Lee, Kwangyong
%A Lee, Yoonju
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kim-etal-2018-modeling
%X Dealing with ‘open-vocabulary’ slots has been among the challenges in the natural language area. While recent studies on attention-based recurrent neural network (RNN) models have performed well in completing several language related tasks such as spoken language understanding and dialogue systems, there has been a lack of attempts to address filling slots that take on values from a virtually unlimited set. In this paper, we propose a new RNN model that can capture the vital concept: Understanding the role of a word may vary according to how long a reader focuses on a particular part of a sentence. The proposed model utilizes a long-term aware attention structure, positional encoding primarily considering the relative distance between words, and multi-task learning of a character-based language model and an intent detection model. We show that the model outperforms the existing RNN models with respect to discovering ‘open-vocabulary’ slots without any external information, such as a named entity database or knowledge base. In particular, we confirm that it performs better with a greater number of slots in a dataset, including unknown words, by evaluating the models on a dataset of several domains. In addition, the proposed model also demonstrates superior performance with regard to intent detection.
%U https://aclanthology.org/C18-1235/
%P 2778-2790
Markdown (Informal)
[Modeling with Recurrent Neural Networks for Open Vocabulary Slots](https://aclanthology.org/C18-1235/) (Kim et al., COLING 2018)
ACL