@inproceedings{kar-etal-2018-folksonomication,
title = "{F}olksonomication: Predicting Tags for Movies from Plot Synopses using Emotion Flow Encoded Neural Network",
author = "Kar, Sudipta and
Maharjan, Suraj and
Solorio, Thamar",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1244/",
pages = "2879--2891",
abstract = "Folksonomy of movies covers a wide range of heterogeneous information about movies, like the genre, plot structure, visual experiences, soundtracks, metadata, and emotional experiences from watching a movie. Being able to automatically generate or predict tags for movies can help recommendation engines improve retrieval of similar movies, and help viewers know what to expect from a movie in advance. In this work, we explore the problem of creating tags for movies from plot synopses. We propose a novel neural network model that merges information from synopses and emotion flows throughout the plots to predict a set of tags for movies. We compare our system with multiple baselines and found that the addition of emotion flows boosts the performance of the network by learning {\ensuremath{\approx}}18{\%} more tags than a traditional machine learning system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kar-etal-2018-folksonomication">
<titleInfo>
<title>Folksonomication: Predicting Tags for Movies from Plot Synopses using Emotion Flow Encoded Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suraj</namePart>
<namePart type="family">Maharjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Folksonomy of movies covers a wide range of heterogeneous information about movies, like the genre, plot structure, visual experiences, soundtracks, metadata, and emotional experiences from watching a movie. Being able to automatically generate or predict tags for movies can help recommendation engines improve retrieval of similar movies, and help viewers know what to expect from a movie in advance. In this work, we explore the problem of creating tags for movies from plot synopses. We propose a novel neural network model that merges information from synopses and emotion flows throughout the plots to predict a set of tags for movies. We compare our system with multiple baselines and found that the addition of emotion flows boosts the performance of the network by learning \ensuremath\approx18% more tags than a traditional machine learning system.</abstract>
<identifier type="citekey">kar-etal-2018-folksonomication</identifier>
<location>
<url>https://aclanthology.org/C18-1244/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2879</start>
<end>2891</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Folksonomication: Predicting Tags for Movies from Plot Synopses using Emotion Flow Encoded Neural Network
%A Kar, Sudipta
%A Maharjan, Suraj
%A Solorio, Thamar
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kar-etal-2018-folksonomication
%X Folksonomy of movies covers a wide range of heterogeneous information about movies, like the genre, plot structure, visual experiences, soundtracks, metadata, and emotional experiences from watching a movie. Being able to automatically generate or predict tags for movies can help recommendation engines improve retrieval of similar movies, and help viewers know what to expect from a movie in advance. In this work, we explore the problem of creating tags for movies from plot synopses. We propose a novel neural network model that merges information from synopses and emotion flows throughout the plots to predict a set of tags for movies. We compare our system with multiple baselines and found that the addition of emotion flows boosts the performance of the network by learning \ensuremath\approx18% more tags than a traditional machine learning system.
%U https://aclanthology.org/C18-1244/
%P 2879-2891
Markdown (Informal)
[Folksonomication: Predicting Tags for Movies from Plot Synopses using Emotion Flow Encoded Neural Network](https://aclanthology.org/C18-1244/) (Kar et al., COLING 2018)
ACL