Emotion Representation Mapping for Automatic Lexicon Construction (Mostly) Performs on Human Level

Sven Buechel, Udo Hahn


Abstract
Emotion Representation Mapping (ERM) has the goal to convert existing emotion ratings from one representation format into another one, e.g., mapping Valence-Arousal-Dominance annotations for words or sentences into Ekman’s Basic Emotions and vice versa. ERM can thus not only be considered as an alternative to Word Emotion Induction (WEI) techniques for automatic emotion lexicon construction but may also help mitigate problems that come from the proliferation of emotion representation formats in recent years. We propose a new neural network approach to ERM that not only outperforms the previous state-of-the-art. Equally important, we present a refined evaluation methodology and gather strong evidence that our model yields results which are (almost) as reliable as human annotations, even in cross-lingual settings. Based on these results we generate new emotion ratings for 13 typologically diverse languages and claim that they have near-gold quality, at least.
Anthology ID:
C18-1245
Volume:
Proceedings of the 27th International Conference on Computational Linguistics
Month:
August
Year:
2018
Address:
Santa Fe, New Mexico, USA
Editors:
Emily M. Bender, Leon Derczynski, Pierre Isabelle
Venue:
COLING
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2892–2904
Language:
URL:
https://aclanthology.org/C18-1245/
DOI:
Bibkey:
Cite (ACL):
Sven Buechel and Udo Hahn. 2018. Emotion Representation Mapping for Automatic Lexicon Construction (Mostly) Performs on Human Level. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2892–2904, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
Cite (Informal):
Emotion Representation Mapping for Automatic Lexicon Construction (Mostly) Performs on Human Level (Buechel & Hahn, COLING 2018)
Copy Citation:
PDF:
https://aclanthology.org/C18-1245.pdf
Code
 JULIELab/EmoMap
Data
Ekman6