@inproceedings{tafreshi-diab-2018-emotion,
title = "Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task Deep Learning",
author = "Tafreshi, Shabnam and
Diab, Mona",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1246",
pages = "2905--2913",
abstract = "Detection and classification of emotion categories expressed by a sentence is a challenging task due to subjectivity of emotion. To date, most of the models are trained and evaluated on single genre and when used to predict emotion in different genre their performance drops by a large margin. To address the issue of robustness, we model the problem within a joint multi-task learning framework. We train this model with a multigenre emotion corpus to predict emotions across various genre. Each genre is represented as a separate task, we use soft parameter shared layers across the various tasks. our experimental results show that this model improves the results across the various genres, compared to a single genre training in the same neural net architecture.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tafreshi-diab-2018-emotion">
<titleInfo>
<title>Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detection and classification of emotion categories expressed by a sentence is a challenging task due to subjectivity of emotion. To date, most of the models are trained and evaluated on single genre and when used to predict emotion in different genre their performance drops by a large margin. To address the issue of robustness, we model the problem within a joint multi-task learning framework. We train this model with a multigenre emotion corpus to predict emotions across various genre. Each genre is represented as a separate task, we use soft parameter shared layers across the various tasks. our experimental results show that this model improves the results across the various genres, compared to a single genre training in the same neural net architecture.</abstract>
<identifier type="citekey">tafreshi-diab-2018-emotion</identifier>
<location>
<url>https://aclanthology.org/C18-1246</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2905</start>
<end>2913</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task Deep Learning
%A Tafreshi, Shabnam
%A Diab, Mona
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F tafreshi-diab-2018-emotion
%X Detection and classification of emotion categories expressed by a sentence is a challenging task due to subjectivity of emotion. To date, most of the models are trained and evaluated on single genre and when used to predict emotion in different genre their performance drops by a large margin. To address the issue of robustness, we model the problem within a joint multi-task learning framework. We train this model with a multigenre emotion corpus to predict emotions across various genre. Each genre is represented as a separate task, we use soft parameter shared layers across the various tasks. our experimental results show that this model improves the results across the various genres, compared to a single genre training in the same neural net architecture.
%U https://aclanthology.org/C18-1246
%P 2905-2913
Markdown (Informal)
[Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task Deep Learning](https://aclanthology.org/C18-1246) (Tafreshi & Diab, COLING 2018)
ACL