@inproceedings{k-sarma-sethares-2018-simple,
title = "Simple Algorithms For Sentiment Analysis On Sentiment Rich, Data Poor Domains.",
author = "K Sarma, Prathusha and
Sethares, William",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1290/",
pages = "3424--3435",
abstract = "Standard word embedding algorithms learn vector representations from large corpora of text documents in an unsupervised fashion. However, the quality of word embeddings learned from these algorithms is affected by the size of training data sets. Thus, applications of these algorithms in domains with only moderate amounts of available data is limited. In this paper we introduce an algorithm that learns word embeddings jointly with a classifier. Our algorithm is called SWESA (Supervised Word Embeddings for Sentiment Analysis). SWESA leverages document label information to learn vector representations of words from a modest corpus of text documents by solving an optimization problem that minimizes a cost function with respect to both word embeddings and the weight vector used for classification. Experiments on several real world data sets show that SWESA has superior performance on domains with limited data, when compared to previously suggested approaches to word embeddings and sentiment analysis tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="k-sarma-sethares-2018-simple">
<titleInfo>
<title>Simple Algorithms For Sentiment Analysis On Sentiment Rich, Data Poor Domains.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Prathusha</namePart>
<namePart type="family">K Sarma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Sethares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Standard word embedding algorithms learn vector representations from large corpora of text documents in an unsupervised fashion. However, the quality of word embeddings learned from these algorithms is affected by the size of training data sets. Thus, applications of these algorithms in domains with only moderate amounts of available data is limited. In this paper we introduce an algorithm that learns word embeddings jointly with a classifier. Our algorithm is called SWESA (Supervised Word Embeddings for Sentiment Analysis). SWESA leverages document label information to learn vector representations of words from a modest corpus of text documents by solving an optimization problem that minimizes a cost function with respect to both word embeddings and the weight vector used for classification. Experiments on several real world data sets show that SWESA has superior performance on domains with limited data, when compared to previously suggested approaches to word embeddings and sentiment analysis tasks.</abstract>
<identifier type="citekey">k-sarma-sethares-2018-simple</identifier>
<location>
<url>https://aclanthology.org/C18-1290/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3424</start>
<end>3435</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simple Algorithms For Sentiment Analysis On Sentiment Rich, Data Poor Domains.
%A K Sarma, Prathusha
%A Sethares, William
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F k-sarma-sethares-2018-simple
%X Standard word embedding algorithms learn vector representations from large corpora of text documents in an unsupervised fashion. However, the quality of word embeddings learned from these algorithms is affected by the size of training data sets. Thus, applications of these algorithms in domains with only moderate amounts of available data is limited. In this paper we introduce an algorithm that learns word embeddings jointly with a classifier. Our algorithm is called SWESA (Supervised Word Embeddings for Sentiment Analysis). SWESA leverages document label information to learn vector representations of words from a modest corpus of text documents by solving an optimization problem that minimizes a cost function with respect to both word embeddings and the weight vector used for classification. Experiments on several real world data sets show that SWESA has superior performance on domains with limited data, when compared to previously suggested approaches to word embeddings and sentiment analysis tasks.
%U https://aclanthology.org/C18-1290/
%P 3424-3435
Markdown (Informal)
[Simple Algorithms For Sentiment Analysis On Sentiment Rich, Data Poor Domains.](https://aclanthology.org/C18-1290/) (K Sarma & Sethares, COLING 2018)
ACL