@inproceedings{muller-strube-2018-transparent,
title = "Transparent, Efficient, and Robust Word Embedding Access with {WOMBAT}",
author = {M{\"u}ller, Mark-Christoph and
Strube, Michael},
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2012/",
pages = "53--57",
abstract = "We present WOMBAT, a Python tool which supports NLP practitioners in accessing word embeddings from code. WOMBAT addresses common research problems, including unified access, scaling, and robust and reproducible preprocessing. Code that uses WOMBAT for accessing word embeddings is not only cleaner, more readable, and easier to reuse, but also much more efficient than code using standard in-memory methods: a Python script using WOMBAT for evaluating seven large word embedding collections (8.7M embedding vectors in total) on a simple SemEval sentence similarity task involving 250 raw sentence pairs completes in under ten seconds end-to-end on a standard notebook computer."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-strube-2018-transparent">
<titleInfo>
<title>Transparent, Efficient, and Robust Word Embedding Access with WOMBAT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark-Christoph</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present WOMBAT, a Python tool which supports NLP practitioners in accessing word embeddings from code. WOMBAT addresses common research problems, including unified access, scaling, and robust and reproducible preprocessing. Code that uses WOMBAT for accessing word embeddings is not only cleaner, more readable, and easier to reuse, but also much more efficient than code using standard in-memory methods: a Python script using WOMBAT for evaluating seven large word embedding collections (8.7M embedding vectors in total) on a simple SemEval sentence similarity task involving 250 raw sentence pairs completes in under ten seconds end-to-end on a standard notebook computer.</abstract>
<identifier type="citekey">muller-strube-2018-transparent</identifier>
<location>
<url>https://aclanthology.org/C18-2012/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>53</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transparent, Efficient, and Robust Word Embedding Access with WOMBAT
%A Müller, Mark-Christoph
%A Strube, Michael
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F muller-strube-2018-transparent
%X We present WOMBAT, a Python tool which supports NLP practitioners in accessing word embeddings from code. WOMBAT addresses common research problems, including unified access, scaling, and robust and reproducible preprocessing. Code that uses WOMBAT for accessing word embeddings is not only cleaner, more readable, and easier to reuse, but also much more efficient than code using standard in-memory methods: a Python script using WOMBAT for evaluating seven large word embedding collections (8.7M embedding vectors in total) on a simple SemEval sentence similarity task involving 250 raw sentence pairs completes in under ten seconds end-to-end on a standard notebook computer.
%U https://aclanthology.org/C18-2012/
%P 53-57
Markdown (Informal)
[Transparent, Efficient, and Robust Word Embedding Access with WOMBAT](https://aclanthology.org/C18-2012/) (Müller & Strube, COLING 2018)
ACL