@inproceedings{pasini-navigli-2017-train,
title = "Train-{O}-{M}atic: Large-Scale Supervised Word Sense Disambiguation in Multiple Languages without Manual Training Data",
author = "Pasini, Tommaso and
Navigli, Roberto",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1008",
doi = "10.18653/v1/D17-1008",
pages = "78--88",
abstract = "Annotating large numbers of sentences with senses is the heaviest requirement of current Word Sense Disambiguation. We present Train-O-Matic, a language-independent method for generating millions of sense-annotated training instances for virtually all meanings of words in a language{'}s vocabulary. The approach is fully automatic: no human intervention is required and the only type of human knowledge used is a WordNet-like resource. Train-O-Matic achieves consistently state-of-the-art performance across gold standard datasets and languages, while at the same time removing the burden of manual annotation. All the training data is available for research purposes at \url{http://trainomatic.org}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pasini-navigli-2017-train">
<titleInfo>
<title>Train-O-Matic: Large-Scale Supervised Word Sense Disambiguation in Multiple Languages without Manual Training Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Pasini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Annotating large numbers of sentences with senses is the heaviest requirement of current Word Sense Disambiguation. We present Train-O-Matic, a language-independent method for generating millions of sense-annotated training instances for virtually all meanings of words in a language’s vocabulary. The approach is fully automatic: no human intervention is required and the only type of human knowledge used is a WordNet-like resource. Train-O-Matic achieves consistently state-of-the-art performance across gold standard datasets and languages, while at the same time removing the burden of manual annotation. All the training data is available for research purposes at http://trainomatic.org.</abstract>
<identifier type="citekey">pasini-navigli-2017-train</identifier>
<identifier type="doi">10.18653/v1/D17-1008</identifier>
<location>
<url>https://aclanthology.org/D17-1008</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>78</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Train-O-Matic: Large-Scale Supervised Word Sense Disambiguation in Multiple Languages without Manual Training Data
%A Pasini, Tommaso
%A Navigli, Roberto
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F pasini-navigli-2017-train
%X Annotating large numbers of sentences with senses is the heaviest requirement of current Word Sense Disambiguation. We present Train-O-Matic, a language-independent method for generating millions of sense-annotated training instances for virtually all meanings of words in a language’s vocabulary. The approach is fully automatic: no human intervention is required and the only type of human knowledge used is a WordNet-like resource. Train-O-Matic achieves consistently state-of-the-art performance across gold standard datasets and languages, while at the same time removing the burden of manual annotation. All the training data is available for research purposes at http://trainomatic.org.
%R 10.18653/v1/D17-1008
%U https://aclanthology.org/D17-1008
%U https://doi.org/10.18653/v1/D17-1008
%P 78-88
Markdown (Informal)
[Train-O-Matic: Large-Scale Supervised Word Sense Disambiguation in Multiple Languages without Manual Training Data](https://aclanthology.org/D17-1008) (Pasini & Navigli, EMNLP 2017)
ACL