@inproceedings{pinter-etal-2017-mimicking,
title = "Mimicking Word Embeddings using Subword {RNN}s",
author = "Pinter, Yuval and
Guthrie, Robert and
Eisenstein, Jacob",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1010/",
doi = "10.18653/v1/D17-1010",
pages = "102--112",
abstract = "Word embeddings improve generalization over lexical features by placing each word in a lower-dimensional space, using distributional information obtained from unlabeled data. However, the effectiveness of word embeddings for downstream NLP tasks is limited by out-of-vocabulary (OOV) words, for which embeddings do not exist. In this paper, we present MIMICK, an approach to generating OOV word embeddings compositionally, by learning a function from spellings to distributional embeddings. Unlike prior work, MIMICK does not require re-training on the original word embedding corpus; instead, learning is performed at the type level. Intrinsic and extrinsic evaluations demonstrate the power of this simple approach. On 23 languages, MIMICK improves performance over a word-based baseline for tagging part-of-speech and morphosyntactic attributes. It is competitive with (and complementary to) a supervised character-based model in low resource settings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pinter-etal-2017-mimicking">
<titleInfo>
<title>Mimicking Word Embeddings using Subword RNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Guthrie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Eisenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embeddings improve generalization over lexical features by placing each word in a lower-dimensional space, using distributional information obtained from unlabeled data. However, the effectiveness of word embeddings for downstream NLP tasks is limited by out-of-vocabulary (OOV) words, for which embeddings do not exist. In this paper, we present MIMICK, an approach to generating OOV word embeddings compositionally, by learning a function from spellings to distributional embeddings. Unlike prior work, MIMICK does not require re-training on the original word embedding corpus; instead, learning is performed at the type level. Intrinsic and extrinsic evaluations demonstrate the power of this simple approach. On 23 languages, MIMICK improves performance over a word-based baseline for tagging part-of-speech and morphosyntactic attributes. It is competitive with (and complementary to) a supervised character-based model in low resource settings.</abstract>
<identifier type="citekey">pinter-etal-2017-mimicking</identifier>
<identifier type="doi">10.18653/v1/D17-1010</identifier>
<location>
<url>https://aclanthology.org/D17-1010/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>102</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mimicking Word Embeddings using Subword RNNs
%A Pinter, Yuval
%A Guthrie, Robert
%A Eisenstein, Jacob
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F pinter-etal-2017-mimicking
%X Word embeddings improve generalization over lexical features by placing each word in a lower-dimensional space, using distributional information obtained from unlabeled data. However, the effectiveness of word embeddings for downstream NLP tasks is limited by out-of-vocabulary (OOV) words, for which embeddings do not exist. In this paper, we present MIMICK, an approach to generating OOV word embeddings compositionally, by learning a function from spellings to distributional embeddings. Unlike prior work, MIMICK does not require re-training on the original word embedding corpus; instead, learning is performed at the type level. Intrinsic and extrinsic evaluations demonstrate the power of this simple approach. On 23 languages, MIMICK improves performance over a word-based baseline for tagging part-of-speech and morphosyntactic attributes. It is competitive with (and complementary to) a supervised character-based model in low resource settings.
%R 10.18653/v1/D17-1010
%U https://aclanthology.org/D17-1010/
%U https://doi.org/10.18653/v1/D17-1010
%P 102-112
Markdown (Informal)
[Mimicking Word Embeddings using Subword RNNs](https://aclanthology.org/D17-1010/) (Pinter et al., EMNLP 2017)
ACL
- Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking Word Embeddings using Subword RNNs. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 102–112, Copenhagen, Denmark. Association for Computational Linguistics.