@inproceedings{kaji-kobayashi-2017-incremental,
title = "Incremental Skip-gram Model with Negative Sampling",
author = "Kaji, Nobuhiro and
Kobayashi, Hayato",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1037/",
doi = "10.18653/v1/D17-1037",
pages = "363--371",
abstract = "This paper explores an incremental training strategy for the skip-gram model with negative sampling (SGNS) from both empirical and theoretical perspectives. Existing methods of neural word embeddings, including SGNS, are multi-pass algorithms and thus cannot perform incremental model update. To address this problem, we present a simple incremental extension of SGNS and provide a thorough theoretical analysis to demonstrate its validity. Empirical experiments demonstrated the correctness of the theoretical analysis as well as the practical usefulness of the incremental algorithm."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaji-kobayashi-2017-incremental">
<titleInfo>
<title>Incremental Skip-gram Model with Negative Sampling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nobuhiro</namePart>
<namePart type="family">Kaji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hayato</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores an incremental training strategy for the skip-gram model with negative sampling (SGNS) from both empirical and theoretical perspectives. Existing methods of neural word embeddings, including SGNS, are multi-pass algorithms and thus cannot perform incremental model update. To address this problem, we present a simple incremental extension of SGNS and provide a thorough theoretical analysis to demonstrate its validity. Empirical experiments demonstrated the correctness of the theoretical analysis as well as the practical usefulness of the incremental algorithm.</abstract>
<identifier type="citekey">kaji-kobayashi-2017-incremental</identifier>
<identifier type="doi">10.18653/v1/D17-1037</identifier>
<location>
<url>https://aclanthology.org/D17-1037/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>363</start>
<end>371</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incremental Skip-gram Model with Negative Sampling
%A Kaji, Nobuhiro
%A Kobayashi, Hayato
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F kaji-kobayashi-2017-incremental
%X This paper explores an incremental training strategy for the skip-gram model with negative sampling (SGNS) from both empirical and theoretical perspectives. Existing methods of neural word embeddings, including SGNS, are multi-pass algorithms and thus cannot perform incremental model update. To address this problem, we present a simple incremental extension of SGNS and provide a thorough theoretical analysis to demonstrate its validity. Empirical experiments demonstrated the correctness of the theoretical analysis as well as the practical usefulness of the incremental algorithm.
%R 10.18653/v1/D17-1037
%U https://aclanthology.org/D17-1037/
%U https://doi.org/10.18653/v1/D17-1037
%P 363-371
Markdown (Informal)
[Incremental Skip-gram Model with Negative Sampling](https://aclanthology.org/D17-1037/) (Kaji & Kobayashi, EMNLP 2017)
ACL
- Nobuhiro Kaji and Hayato Kobayashi. 2017. Incremental Skip-gram Model with Negative Sampling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 363–371, Copenhagen, Denmark. Association for Computational Linguistics.