@inproceedings{lavergne-yvon-2017-learning,
title = "Learning the Structure of Variable-Order {CRF}s: a finite-state perspective",
author = "Lavergne, Thomas and
Yvon, Fran{\c{c}}ois",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1044/",
doi = "10.18653/v1/D17-1044",
pages = "433--439",
abstract = "The computational complexity of linear-chain Conditional Random Fields (CRFs) makes it difficult to deal with very large label sets and long range dependencies. Such situations are not rare and arise when dealing with morphologically rich languages or joint labelling tasks. We extend here recent proposals to consider variable order CRFs. Using an effective finite-state representation of variable-length dependencies, we propose new ways to perform feature selection at large scale and report experimental results where we outperform strong baselines on a tagging task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lavergne-yvon-2017-learning">
<titleInfo>
<title>Learning the Structure of Variable-Order CRFs: a finite-state perspective</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Lavergne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The computational complexity of linear-chain Conditional Random Fields (CRFs) makes it difficult to deal with very large label sets and long range dependencies. Such situations are not rare and arise when dealing with morphologically rich languages or joint labelling tasks. We extend here recent proposals to consider variable order CRFs. Using an effective finite-state representation of variable-length dependencies, we propose new ways to perform feature selection at large scale and report experimental results where we outperform strong baselines on a tagging task.</abstract>
<identifier type="citekey">lavergne-yvon-2017-learning</identifier>
<identifier type="doi">10.18653/v1/D17-1044</identifier>
<location>
<url>https://aclanthology.org/D17-1044/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>433</start>
<end>439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning the Structure of Variable-Order CRFs: a finite-state perspective
%A Lavergne, Thomas
%A Yvon, François
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F lavergne-yvon-2017-learning
%X The computational complexity of linear-chain Conditional Random Fields (CRFs) makes it difficult to deal with very large label sets and long range dependencies. Such situations are not rare and arise when dealing with morphologically rich languages or joint labelling tasks. We extend here recent proposals to consider variable order CRFs. Using an effective finite-state representation of variable-length dependencies, we propose new ways to perform feature selection at large scale and report experimental results where we outperform strong baselines on a tagging task.
%R 10.18653/v1/D17-1044
%U https://aclanthology.org/D17-1044/
%U https://doi.org/10.18653/v1/D17-1044
%P 433-439
Markdown (Informal)
[Learning the Structure of Variable-Order CRFs: a finite-state perspective](https://aclanthology.org/D17-1044/) (Lavergne & Yvon, EMNLP 2017)
ACL