@inproceedings{sharma-etal-2017-sentiment,
    title = "Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings",
    author = "Sharma, Raksha  and
      Somani, Arpan  and
      Kumar, Lakshya  and
      Bhattacharyya, Pushpak",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1058/",
    doi = "10.18653/v1/D17-1058",
    pages = "547--552",
    abstract = "Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, `master', `seasoned' and `familiar' point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman{'}s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharma-etal-2017-sentiment">
    <titleInfo>
        <title>Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Raksha</namePart>
        <namePart type="family">Sharma</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Arpan</namePart>
        <namePart type="family">Somani</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lakshya</namePart>
        <namePart type="family">Kumar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Pushpak</namePart>
        <namePart type="family">Bhattacharyya</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, ‘master’, ‘seasoned’ and ‘familiar’ point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman’s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task.</abstract>
    <identifier type="citekey">sharma-etal-2017-sentiment</identifier>
    <identifier type="doi">10.18653/v1/D17-1058</identifier>
    <location>
        <url>https://aclanthology.org/D17-1058/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>547</start>
            <end>552</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings
%A Sharma, Raksha
%A Somani, Arpan
%A Kumar, Lakshya
%A Bhattacharyya, Pushpak
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F sharma-etal-2017-sentiment
%X Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, ‘master’, ‘seasoned’ and ‘familiar’ point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman’s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task.
%R 10.18653/v1/D17-1058
%U https://aclanthology.org/D17-1058/
%U https://doi.org/10.18653/v1/D17-1058
%P 547-552
Markdown (Informal)
[Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings](https://aclanthology.org/D17-1058/) (Sharma et al., EMNLP 2017)
ACL