@inproceedings{sharma-etal-2017-sentiment,
title = "Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings",
author = "Sharma, Raksha and
Somani, Arpan and
Kumar, Lakshya and
Bhattacharyya, Pushpak",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1058",
doi = "10.18653/v1/D17-1058",
pages = "547--552",
abstract = "Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, {`}master{'}, {`}seasoned{'} and {`}familiar{'} point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman{'}s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharma-etal-2017-sentiment">
<titleInfo>
<title>Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raksha</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpan</namePart>
<namePart type="family">Somani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lakshya</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, ‘master’, ‘seasoned’ and ‘familiar’ point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman’s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task.</abstract>
<identifier type="citekey">sharma-etal-2017-sentiment</identifier>
<identifier type="doi">10.18653/v1/D17-1058</identifier>
<location>
<url>https://aclanthology.org/D17-1058</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>547</start>
<end>552</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings
%A Sharma, Raksha
%A Somani, Arpan
%A Kumar, Lakshya
%A Bhattacharyya, Pushpak
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F sharma-etal-2017-sentiment
%X Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a fine-grained sentiment analysis. For example, ‘master’, ‘seasoned’ and ‘familiar’ point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semi-supervised technique that uses sentiment bearing word embeddings to produce a continuous ranking among adjectives that share common semantics. Our system demonstrates a strong Spearman’s rank correlation of 0.83 with the gold standard ranking. We show that sentiment bearing word embeddings facilitate a more accurate intensity ranking system than other standard word embeddings (word2vec and GloVe). Word2vec is the state-of-the-art for intensity ordering task.
%R 10.18653/v1/D17-1058
%U https://aclanthology.org/D17-1058
%U https://doi.org/10.18653/v1/D17-1058
%P 547-552
Markdown (Informal)
[Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings](https://aclanthology.org/D17-1058) (Sharma et al., EMNLP 2017)
ACL